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CHAPTER 1 GENERAL INTRODUCTION 

Overview  

In ancient China, water has been regarded as one of the five vital components of 

life. It has been observed that water has many fascinating properties: water is ‘soft’ yet it 

can penetrate a hard rock; water is ‘pure’ yet it can tolerate other beings. Because of its 

unique properties, water is often associated with good quality and has been given the 

highest praise by Laozi in his book Tao Te Ching saying: the highest/best quality that one 

can have is being like water. However, little did people understand why and how water 

possesses such fascinating properties. 

 Modern scientific developments made people realize that the macroscopic liquid 

water is made of a large number of water molecules held together via a network of 

hydrogen bonds. And those wonderful properties of water are merely the macroscopic 

manifestations of the interactions between water molecules and other molecules. For 

example, the dissolving ability of water is due to the fact that the interaction between a 

water molecule and the other molecular species is stronger than the interactions among 

their own molecular species. In fact the interactions between any two molecules are 

governed by the same physics and are termed intermolecular interaction (or 

intermolecular forces in some literature, although technically ‘force’ is incorrect usage 

here).  

Although the very existence of the intermolecular interactions is easily proved, 

e.g. the mere presence of the solid phase of matter, and scientists today have recognized 
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that the seemingly weak intermolecular interactions essentially hold the world together 

through a delicate and cooperative process, the theoretical understanding of various 

intermolecular interactions is still far from satisfactory. On the practical side, 

theoreticians need to balance computational cost and accuracy. Because of the relatively 

small magnitudes of the intermolecular interactions, errors that appear tiny compared to 

the usual chemical (covalent) bonding may change conclusions qualitatively. High-level 

ab initio methods including explicit description of electron correlation can achieve the 

desired accuracy at very high computational cost. (Chapter 5 and 6) However the 

cooperative network of hundreds of thousands of molecules that reflects the true power of 

intermolecular interactions cannot be modeled easily by ab initio methods. Deeper 

understanding of intermolecular interactions yields better theoretical models; better 

theoretical models facilitate and even deepen the understanding of intermolecular 

interactions. With the aforementioned motivation in mind, a significant portion of this 

dissertation is dedicated to developing a method to describe the intermolecular 

interactions accurately with affordable computational resources. (Chapter 2-4)  

Dissertation Organization 

 This introduction chapter builds the foundation of ab initio methods and briefly 

describes the theoretical methods employed in the following chapters including an 

overview of the effective fragment potential method (EFP). Chapter 2 presents the 

development and implementation of using the valence virtual orbitals (VVOs) in place of 

canonical virtual orbitals for the charge transfer interaction and its gradient between two 

EFP fragments (EFP-EFP). Chapter 3 provides a detailed derivation and implementation 

of the R-7 term of the dispersion energy expansion using dipole-dipole and dipole-
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quadrupole localized molecular orbital (LMO) dynamic polarizabilities over the 

imaginary frequency range in the framework of EFP. Chapter 4 derives the fully analytic 

gradient of the approximated QM-EFP exchange repulsion energy between the ab initio 

molecule and EFP fragment (QM-EFP). Extensive code modification on the previous 

implementation of QM-EFP exchange repulsion Fock operator and energy is made to 

allow the presence of multiple EFP fragments. Chapter 5 explores the application of a 

local correlation coupled cluster approach, cluster-in-molecules (CIM) to study the 

anionic water clusters in the range of 4 – 20 water molecules. Chapter 6 studies the 

temperature effect on the binding enthalpies between SiH4 and three boron containing 

compounds and realizes the importance of outer core correlation in obtaining accurate 

energies and structures. 

Theoretical Background 

Time-Dependent Schrödinger Equation 

Quantum mechanics provides the laws of motion for microscopic particles. 

Schrödinger postulated the dynamical equation that governs the time evolution of the 

system in 1926, known as the time-dependent Schrödinger equation1–5. 

 
−
!
i
∂Ψ r,t( )

∂t
= Η

^
Ψ r,t( ) = T + V( )Ψ r,t( )     (1)

 
 

The Hamiltonian operator H is given as a sum of kinetic and potential energy 

operators (for low-velocity particles, i.e. non-relativistic). The solution of the time-

dependent Schrödinger equation is a function of time and position called a wave function. 

The wave function contains all of the information about the system. The probability of 

observing a particle at position r and time t is given as the square of the wave function. 

Ψ
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This is a fundamental difference between classical mechanics and quantum mechanics, 

because classical mechanics is deterministic while quantum mechanics is probabilistic.  

For systems in which the potential energy operator is time-independent, the 

Hamiltonian becomes time-independent. When acting on the wave function, the 

Hamiltonian yields the total energy of the system. 

 
Η
^
Ψ r,t( ) = ΕΨ r,t( ) = −

!
i
∂Ψ r,t( )

∂t
	   	   	   	   	   (2) 

Time-Independent Schrödinger Equation 

The non-relativistic, time-independent Schrödinger Equation can be written as  

Η
^
Φ r( ) = ΕΦ r( )        (3) 

where is the Hamiltonian operator. In atomic units, it is defined as 

H = −
1

2M A

∇A
2 −

1
2i=1

N

∑
A=1

M

∑ ∇i
2 −

ZA

riAA=1

M

∑
i=1

N

∑ +
1
rijj>i

N

∑
i=1

N

∑ +
ZAZB

RABB>A

M

∑
A=1

M

∑  (4) 

Where M A  is the ratio of the mass of nucleus A to the mass of an electron and ZA  is the 

atomic number of the nucleus A. The systems of electrons and nuclei are described by 

their position vectors ri  and RA , respectively. Then the distance between electron i and 

nucleus A is riA = ri − RA , the distance between electrons i and j is rij = ri − rj and the 

distance between nuclei A and B is RAB = RA − RB .  The first two terms in Eq. (4) 

represent the operators for the kinetic energy of the nuclei and electrons, respectively. 

The third term is the Coulomb attraction between nuclei and electrons. The last two terms 

represent the repulsion between electrons and between nuclei, respectively. Φ  is the total 

wave function describing a collection of charged particles, nuclei and electrons. It is a 

Η
^
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function of electronic and nuclear coordinates, Φ ri{ }, RA{ }( ) , where ri{ }  and RA{ }

represent the collection of electronic and nuclear coordinates in the system, respectively.  

Born-Oppenheimer Approximation6 

Since nuclei are so much heavier than electrons, the nuclei move much slower 

than electrons. To a good approximation, electrons can be considered to move in a field 

of fixed nuclei. Two consequences immediately follow: the nuclear kinetic energy is zero 

and the repulsion energy between the nuclei is a constant. The remaining terms in Eq. (4) 

are defined as the electronic Hamiltonian.  

H
^

elec = −
1
2i=1

N

∑ ∇i
2 −

ZA

riAA=1

M

∑
i=1

N

∑ +
1
rijj>i

N

∑
i=1

N

∑     (5) 

The eigenvalue solution to the electronic Hamiltonian is the electronic wave 

function, which describes the motion of electrons for a fixed nuclear configuration.  

H
^

elec Φelec ri{ }; RA{ }( ) = EelecΦelec ri{ }; RA{ }( )    (6) 

The electronic wave functions obtained by solving Eq. (6) depend explicitly on the 

electronic coordinates and parametrically on the nuclear coordinates.  

Invoking the same approximation, one could solve the nuclear wave function: 

since electrons move so much faster than the nuclei, the nuclei “feel” the electrons in an 

averaged field. The nuclear Hamiltonian then becomes 

H = −
1

2M A

∇A
2 + −

1
2
∇i

2

i=1

N

∑ −
ZA

riAA=1

M

∑
i=1

N

∑ +
1
rijj>i

N

∑
i=1

N

∑
A=1

M

∑ +
ZAZB

RABB>A

M

∑
A=1

M

∑

= −
1

2M A

∇A
2

A=1

M

∑ + Eelec RA{ }( ) +
ZAZB

RABB>A

M

∑
A=1

M

∑
(7)
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The second and third terms of Eq. (7) together constitute the potential energy operator for 

the nuclei. This is a significant consequence of Born-Oppenheimer approximation: it is 

possible to define the “shape” of a molecule and describe how the energy of the molecule 

changes as the shape of the molecule changes, i.e. moving on a potential energy surface. 

The concepts of equilibrium geometries such as minima and transition states become 

meaningful. 

By solving the nuclear Schrödinger equation, 

H
^

nuc Φnuc RA{ }( ) = EnucΦnuc RA{ }( )      (8) 

the motions of the nuclei, vibration and rotation, can be described.  

Under the premise of the Born-Oppenheimer approximation, the problem of 

solving the Schrödinger equation is reduced to solving the electronic Schrödinger 

equation for a fixed nuclear configuration and is what all the ab initio methods described 

below aim for.  

For systems with more than one electron an exact analytic solution of the 

Schrödinger equation is not possible because the electron-electron repulsion term is 

inseparable. Various approximations must be made to get around this problem.  

Variational Theorem 

Another important theorem is the variational theorem, which states that for a 

system whose Hamiltonian is time-independent and whose lowest-energy eigenvalue is 

E0, if Φ is any normalized, well-behaved function that satisfies the appropriate boundary 

conditions, then 

Φ* H
^
Φdτ∫ ≥ E0        (9) 
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The integral in Eq. (9) is called the variational integral. The better the trial 

function is, the lower the values of the variational integral and closer to the true ground 

state energy E0. 

Antisymmetry Principle 

Electrons are fermions, hence they obey antisymmetry principle, which states that 

a many-electron wave function must be antisymmetric with respect to interchange of any 

two electrons. The simplest example would be a two-electron system and, to satisfy 

antisymmetry principle, the total wave function Φ , expressed in terms of one-electron 

wave functions ψ , is in the form, 

Φ r1,r2( ) = 2− 1
2 ψ 1 r1( )ψ 2 r2( ) −ψ 1 r2( )ψ 2 r1( )$% &'    (10) 

 Eq. (10) can be cast into a determinant called a Slater determinant, and this can be 

generalized to an N-electron wave function. This single determinant wave function is an 

approximation to the exact wave function.  

Hartree-Fock Method 

The Hartree-Fock (HF) method7–10 is (for closed shell species) a single 

determinant method that solves the approximate time-independent Schrödinger equation 

in a self-consistent manner. The approximate wave function is the single determinant 

formed from a set of occupied spin orbitals, χi   

Φ = χ1χ2 ...χN        (11) 

The energy of this approximate wave function is calculated as the expectation value of 

the Hamiltonian operator, provided the wave function is normalized. 

E = Φ H Φ         (12) 
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The determinantal form of the wave function gives rise to an exchange term in the energy 

expression, 

E = hi
i

N

∑ +
1
2

Jij − Kij( ) + VNN
j

N

∑
i

N

∑      (13) 

where i and j run over all of the electrons in the system, and the factor of 1/2 accounts for 

the double counting of electron pairs. The variational theorem tells us that the “best” 

wave function, or the best set of occupied MOs is the one that makes the energy a 

minimum, that is, the variation of the energy with respect to a change in the MOs is zero, 

with the constraint that the MOs remain orthonormal. Such a constrained optimization 

can be facilitated by the Lagrange method of undetermined multipliers. 

L = Φ | H | Φ − εij χi | χ j( ) − δ ij⎡⎣ ⎤⎦
ij

N

∑

= E0 χi{ }⎡⎣ ⎤⎦ − εij χi | χ j( ) − δ ij⎡⎣ ⎤⎦
ij

N

∑
    (14) 

where Φ = χ1χ2 ...χiχ j ...χN is the single determinant formed from N occupied spin 

orbitals. The energy E0 = Φ | H | Φ  is a functional of the spin orbitals χi{ } . εij is the 

Lagrange multiplier. This procedure leads to the HF equations 

f 1( )χi 1( ) = εiχi 1( )        (15) 

where ε  is the orbital energy and f  is the Fock operator, which (for closed shells) is 

defined (in terms of spin orbitals) to be  

f 1( ) = h 1( ) + vHF 1( ) = h 1( ) + J(1) − K(1)[ ]
j=1

N

∑     (16) 
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The Fock operator is an effective one-electron energy operator, with h 1( )

describing the kinetic energy of an electron and its attraction to the nuclei, and vHF 1( ) 	  

describing	  the	  repulsion	  to	  all	  the	  other	  electrons	  in	  an	  averaged	  way. J and K are the 

Coulomb and exchange operators, respectively. Their effects when operating on a spin 

orbital are  

J j 1( )χi 1( ) = dr2χ j
* 2( )r12

−1∫ χ j 2( )⎡
⎣

⎤
⎦ χi 1( )     (17) 

K j 1( )χi 1( ) = dr2χ j
* 2( )r12

−1∫ χi 2( )⎡
⎣

⎤
⎦ χ j 1( )     (18) 

where the spin orbital takes the form χ r,ω( ) = ϕ r( )α ω( )orϕ r( )β ω( ) . Note that the 

Coulomb and exchange operators have a functional dependence on the solutions of the 

Fock operator and hence Eq. (15) is nonlinear and must be solved iteratively.   

LCAO-MO approximation (Basis Set approximation) 

A set of basis functions is introduced to expand the spin orbitals.  

χi = Cµiφµ
µ
∑         (19) 

This turns solving the HF equation into solving a matrix equation for the expansion 

coefficients. The spin orbital χi  would be exactly represented by the expansion of Eq. 

(19) if the basis set was complete (infinite in dimension).  The energy obtained would 

then be the HF limit. In practice, a calculation can utilize only a finite number of basis 

functions. Typically, the larger the basis set, the better the trial wave function as it has 

more flexibility during the self-consistent iterations.  

At the beginning of self-consistent iterations, an initial guess of orbitals is made 

from which the density is obtained. The Fock matrix is formed from the core-
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Hamiltonian matrix and the two-electron integral matrix. Diagonalization of the Fock 

matrix leads to a new set of orbitals. The process repeats until the density obtained from 

new orbitals agrees with the previous density within a certain threshold.  

 The general HF equation is written in terms of molecular spin orbitals that contain 

a spin function and a spatial orbital. Restricted HF (RHF) wave functions contain pairs of 

electrons, and each pair has the same spatial part but opposite spin functions. RHF is used 

for closed-shell system. For open-shell systems, the restricted open-shell HF (ROHF) 

method forces the spatial part of the doubly occupied orbitals to be the same. If there is 

no restriction on the spatial orbitals that are occupied by electrons of different spins, the 

trial wave function is an unrestricted HF (UHF) wave function. 

 By using a single determinant form of the wave function, the instantaneous 

electron-electron repulsion is replaced by an average interaction. The missing electron 

correlation energy, although small (~1% of the total energy), is extremely important for 

describing chemical phenomena. In addition, the restricted form of the wave function 

simply cannot describe the dissociation process into open-shell fragments while the 

unrestricted wave function does not produce accurate results. Despite its limitations, the 

HF wave function is the best single-determinant trial wave function within a given basis 

set and is the starting point for more accurate approximations.  

Post-Hartree Fock methods 

 Various methods have been developed in an effort of recovering the dynamic 

correlation energy. Although the configuration interaction method is not used in this 

thesis, it is briefly mentioned in order to define the correlation energy. 
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Configuration Interaction (CI)11,12 

The HF wave function, the determinant formed from the N lowest-energy orbitals, 

is the simplest electronic representation of the ground state wave function that is 

antisymmetric. Other so-called excited determinants that are formed from the solutions of 

the HF equation represent the configurations with promotion of electrons from some 

occupied to virtual orbitals. Conceptually, the true wave function is likely to result from 

the interaction of several electronic configurations and mixing those excited determinants 

allows more variational flexibility in the wave function. The set of HF determinants and 

all the excited determinants can serve as a basis to expand the exact ground state many-

electron wave function,Φ0 .  

Φ0 = c0 Ψ0 + ca
r

ar
∑ Ψa

r + cab
rs

a<b
r<s

∑ Ψab
rs + cabc

rst

a<b<c
r<s<t

∑ Ψabc
rst + ...  (20) 

This is the form of the full CI ground state wave function. Here a, b, c etc. denote 

occupied orbitals and r, s, t etc. denote virtual orbitals. Ψ0 is the HF determinant, and 

Ψa
r is a singly excited determinant differing from Ψ0 by exciting the electron in ψ a to 

ψ r . The restriction on the summation ensures that each excited determinant is included 

only once.  

If the AO basis is complete, so is the basis of determinants. Then full CI would 

give the exact energies of all the electronic states. At finite basis, full CI provides the 

upper bound for that basis. The (dynamic) correlation energy is defined as the difference 

between the exact energy and the HF energy 

Ecorr = EFCI − EHF        (21)   
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Except for a few very small systems, full CI is practically intractable. Therefore 

truncation at single and double excitation in Eq. (20) is common.  

Perturbation Theory 

The basic idea behind perturbation theory is that knowing how to treat a simple 

system and given that the real system is not too different from the simple system, one can 

treat the real/more complex system mathematically as a perturbed simple system. The 

commonly used second-order Möller-Plesset perturbation theory (MP2) is the application 

of a more general formalism called Rayleigh-Schrödinger perturbation theory (RSPT) to 

many-body systems. Since the Effective Fragment Potential Method (which constitutes 

the bulk of this thesis) is formulated in the framework of Rayleigh-Schrödinger 

perturbation theory (RSPT), RSPT will be briefly mentioned for later discussion. 

Rayleigh-Schrödinger Perturbation Theory (RSPT) 

The full Hamiltonian is the sum of the unperturbed Hamiltonian and the 

perturbation , where the solution to H0  is known:	  H0 Ψ i = Ei
(0) Ψ i . To solve the 

eigenvalue problem H Φi = Ei Φi , one introduces an ordering parameter λ and 

expands the eigenvalues and eigenfunctions in terms of Ei
(n)  and Ψ i

(n)  in a Taylor series 

of λ.  

Ei = Ei
(0) + λEi

(1) + λ2Ei
(2) + ...       (22) 

Φi = Ψ i
(0) + λ Ψ i

(1) + λ2 Ψ i
(2) + ...     (23) 

Ei
(n)  and Ψ i

(n)  are called the n-th order energy and n-th order wave function, 

respectively.  

H H0

V
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By choosing intermediate normalization, Ψ i
(0) Φi = 1 , and expanding Ψ i

(1) 	  in 

the basis of the eigenfunctions of H0 , Ψ i
(1) = cn

(1) Ψn
(0)

n
∑ , the first three order of 

energies can be expressed as: 

Ei
(0) = Ψ i

(0) H0 Ψ i
(0)       (24) 

Ei
(1) = Ψ i

(0) V Ψ i
(0)        (25) 

Ei
(2) = Ψ i

(0) V Ψ i
(1) =

Ψ i
(0) V Ψn

(0) Ψn
(0) V Ψ i

(0)

Ei
(0) − En

(0)
n≠ i
∑   (26) 

Möller-Plesset Perturbation Theory (MPPT)13 

MPPT is the application of RSPT to the many-body problem. H0  is a sum of the 

Fock operators 

H0 = fi
i
∑ = h i( ) + vHF i( )( )

i
∑      (27) 

In Eq. (27), i sums over the electrons in the system. Hence the perturbation V is 

V = rij
−1 − vHF i( )

i
∑

i< j
∑        (28) 

When the HF wave function is used as the zeroth order wave function, E0+E1 recovers the 

HF energy. The correction to the HF energy starts at the second-order, MP2. MP2 

typically accounts for 80-90% of the correlation energy and is widely used for its 

efficiency and adaptivity on parallel computer systems. Since the Hamiltonian used is not 

exact, perturbation theory is not variational. Hence higher order energy corrections do not 

always guarantee a lowering of the energy.  
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Coupled-Cluster Theory (CC)14–16 

Like configuration interaction (CI), CC expresses the wave function as a sum of 

the HF determinant and all other excited determinants. This correlated wave function is 

obtained by allowing a series of excitation operators Tn  to act on the HF wave function. 

Φ = 1+ T +
T 2

2!
+

T 3

3!
+ ....

⎛
⎝⎜

⎞
⎠⎟
ΨHF = eTΨHF 	   	   	   	   (29) 

And the cluster operator T is 

T = T1 + T2 + T3 + ....+ Tn 	   	   	   	   	   	   (30)  

where T1  is the single electron excitation operator and T2  is the double electron 

excitation operator, and so on. When Ti  acts on an HF reference wave function, all 

excited determinants are generated. 

T1Ψ
HF = ti

aΨ i
a

a

vir

∑
i

occ

∑ 	   	   	   	   	   	   	   (31) 

T2Ψ
HF = tij

abΨ ij
ab

a<b

vir

∑
i< j

occ

∑ 	  	   	   	   	   	   	   (32) 

where the expansion coefficients t are called amplitudes.  

 If all of the cluster operators up to Tn are included in T, the CC wave function will 

be equivalent to full CI. A full CC computation is impossible except for very small 

systems. It is therefore common to use a truncated cluster operator that includes only 

singles and doubles (CCSD) and the triples contribution computed by perturbation theory 

(CCSD(T)).   
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Solvation Method 

The aforementioned ab initio methods become computationally intractable when 

dealing with the solvation problem due to steep scaling with the system size. Two classes 

of approaches have been developed to circumvent this problem. One class is called the 

continuum or implicit solvation. These methods represent the bulk solvent by some 

dielectric parameters and interact with the solute via this pre-defined electric field. The 

advantage of such methods is that they attempt to describe the bulk solvation in a 

computationally inexpensive manner. However they lack the explicit solvent-solute 

interactions. Insightful understanding of structures, properties and reaction mechanism 

relies on accurate description of solvent-solute interaction. The other class of methods 

called the discrete or explicit solvation methods are developed for this reason. Note that 

all the ab initio methods treat solvent molecules explicitly. However the explicit 

solvation methods usually refer to those that approximate each solvent molecule as a 

perturbative potential for the solute molecules. Most explicit solvent methods contain 

some parameters that are obtained by fitting to experiment or high-level ab initio 

calculation; TIP3P would be an example of such potential17.  

Effective Fragment Potential Method (EFP) 

The Effective Fragment Potential method (EFP) has been developed by Gordon 

and coworkers for the past two decades or so to study intermolecular interactions, 

including solvation. The EFP method is designed to accurately and efficiently describe 

the interaction between molecules. Detailed descriptions of EFP can be found in many 

papers18–23 (including Chapters 2-4 in this dissertation). The following paragraphs present 

the framework within which EFP is built.  
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Consider a system of two weakly interacting molecules ( ), the unperturbed 

Hamiltonian is the sum of the individual Hamiltonian. 

H0 = HA + HB 	   	   	   	   	   	   	   (33)  

Assuming the electron densities of the two molecules do not overlap, the 0th order wave 

function is the Hartree product of the wave functions of isolated A and B. This is the so-

called long-range approximation. 

Ψ(0) = Ψ0
AΨ0

B 	   	   	   	   	   	   	   	   (34) 

The perturbation V is the electronic interaction between the electrons and nuclei in the 

two molecules. Then the zeroth order energy is just the sum of the energies of isolated A 

and B. Three types of intermolecular interaction arises as the first and second order 

perturbation energy: 

E (1) = Ψ(0) V Ψ(0) = Ψ0
A Ψ0

B V Ψ0
A Ψ0

B 	   	   	   (35) 

E (2) =
Ψ0

A Ψ0
B V Ψm

A Ψ0
B

E0
A + E0

B( ) − Em
A + E0

B( )m≠0
∑ +

Ψ0
A Ψ0

B V Ψ0
A Ψn

B

E0
A + E0

B( ) − E0
A + En

B( )n≠0
∑

+
Ψ0

A Ψ0
B V Ψm

A Ψn
B

E0
A + E0

B( ) − Em
A + En

B( )n≠0
∑

m≠0
∑

	   (36) 

Eq. (35) is just the classical coulomb interaction. The first two terms of the 2nd-order 

perturbation energy gives the induction/polarization energy, arising from promoting 

molecule A to excited state m or promoting molecule B to excited state n. The last term 

corresponds to the dispersion energy when both A and B are excited. Since the overlap 

between the two molecules is assumed to be negligible, the excited states of individual 

molecules result from mixing their own virtual orbitals. The interaction operator V can be 

A ⋅ ⋅ ⋅ B
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represented as multipole-multipole interactions. In EFP, distributed multipole expansions 

developed by Stone 24,25 are used.  

 As two molecules approach, the long-range approximation starts to break down. 

Instead of reformulating all three above-mentioned interactions, damping functions have 

been developed as short-range corrections for these three interactions. In addition, two 

types of interaction arise at short range. Exchange repulsion and charge transfer 

interaction emerge as additional first- and second-order interactions, respectively, when 

using antisymmetrized product of wave functions for the cluster AB. 

The initial implementation of EFP is for water only (EFP1)18. The intermolecular 

interaction between molecules is partitioned into three components: Coulomb interaction, 

induction and a remainder repulsive term. The Coulomb interaction is computed 

according to Stone’s distributed multipole analysis24,25, with the expansion truncated at 

octopole and the expansion centers at the atom centers and bond midpoints. The 

induction term is computed using the static anisotropic localized molecular orbital 

(LMO) dipole polarizability tensor. The dipole induced by the total electric field of all 

other molecules/fragments is iterated to self-consistency, incorporating many-body effect 

into the model. The remainder term is determined by fitting to water potential calculated 

either with Hartree-Fock or density functional theory (B3LYP functional26,27). This 

empirically determined remainder term prevents EFP1 from easy generalization to other 

solvent types.  

The second implementation, EFP2, also known in the literature as the general 

effective fragment potential method has been developed for any closed-shell molecule. 

The interaction between molecules in EFP2 is partitioned into five terms: Coulomb 
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interaction, polarization, dispersion, exchange repulsion and charge transfer. The 

coulomb and polarization terms are identical to EFP1. The dispersion is modeled using 

the dynamic dipole polarizability tensor over imaginary frequency range. In this 

dissertation, R-7 dispersion interaction is developed using the dynamic anisotropic dipole-

quadrupole polarizability tensor over the imaginary frequency range. The exchange 

repulsion is derived from a power expansion of the intermolecular overlap truncated at 

the second order. The charge transfer interaction is obtained from a second-order 

perturbative treatment, using the same power expansion of the intermolecular overlap but 

truncated at the first order.  
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Abstract 

The charge transfer (CT) interaction, the most time-consuming term in the general 

effective fragment potential (EFP) method, is made much more computationally efficient. 

This is accomplished by the projection of the quasiatomic minimal-basis-set orbitals 

(QUAMBOs) as the atomic basis onto the self-consistent field (SCF) virtual molecular 

orbital (MO) space to select a subspace of the full virtual space called the valence virtual 

space. The diagonalization of the Fock matrix in terms of QUAMBOs recovers the 

canonical occupied orbitals and more importantly, gives rise to the valence virtual 

orbitals (VVOs). The CT energies obtained using VVOs are generally as accurate as 

those obtained with the full virtual space canonical MOs because the QUAMBOs span 

the valence part of the virtual space, which can generally be regarded as ‘chemically 

important’. The number of QUAMBOs is the same as the number of minimal-basis 

molecular orbitals (MOs) of a molecule. Therefore, the number of VVOs is significantly 



www.manaraa.com

	   22	  

smaller than the number of canonical virtual MOs, especially for large atomic basis sets. 

This leads to a dramatic decrease in the computational cost.  

Introduction 

 Modeling intermolecular interactions accurately and efficiently has been a target 

of computational chemistry for decades. Intermolecular interactions play an important 

role in determining the structures and consequently the properties of molecular systems 

that have physical, chemical, and biological significance. For example it is essentially the 

hydrogen-bonding pattern between the nucleotide bases that enables the correct 

transcription and translation processes in expressing a protein.1 The dispersion interaction 

among the stacking nucleotide bases provides a significant portion of the stabilization.2,3 

Protein structures are ultimately the result of chemical and intermolecular interactions 

between the amino acids.1 High-level ab initio methods that include dynamic electron 

correlation can provide accurate descriptions of all of the contributions to intermolecular 

interactions, including Coulomb, induction/polarization, exchange repulsion, dispersion, 

and charge transfer interactions. Unfortunately, such correlated methods are very 

computationally demanding. For example, second order perturbation theory (MP2) and 

coupled cluster theory with singe, double, and perturbative triple excitations, CCSD(T), 

scale as N5 and N7, respectively, where N is the number of basis functions. Consequently, 

such methods quickly become prohibitive for large systems, unless approximations are 

introduced.  

Chemistry is often carried out in a solvent. A fundamental understanding of how 

solvent molecules interact with solutes and with each other can provide molecular-level 

insights about how chemical phenomena occur. In order to capture explicit solvent effects 
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one frequently needs to include a large number of solvent molecules, more than is 

practicable for correlated ab initio methods. One therefore needs to develop methods that 

are more efficient and at the same time retain the accuracy of the correlated methods. 

Implicit solvent methods circumvent these scaling problems, but at the expense of 

omitting explicit solute-solvent interactions, such as hydrogen bonding.   

The effective fragment potential (EFP) method is an explicit solvent method4,5. 

The original EFP implementation, called EFP1,5 was designed solely for water. The 

components of the EFP1 potential are the Coulomb interaction, the induction/polarization 

interaction, and a remainder term. The Coulomb interaction is modeled using the Stone 

distributed multipole analysis (DMA) method 6, expanded through octopoles, where the 

expansion points are the atom centers and the bond midpoints. The polarization 

interaction is modeled with localized molecular orbital (LMO) polarizability tensors on 

individual bonds and lone pairs of electrons and is iterated to self-consistency. The 

iterative process incorporates many-body effects into the model. The remainder term is 

fitted to the water dimer potential calculated either with Hartree-Fock (HF) or density 

functional theory (DFT, with the B3LYP functional7). For EFP1/HF, the remainder term 

includes exchange repulsion and charge transfer. In the EFP1/DFT method the remainder 

term also includes some correlation effects.  

The general EFP implementation, often called EFP2, has no empirically fitted 

parameters and is therefore applicable to any (closed shell) molecular species. The 

components of the EFP2 method are: Coulomb, induction/polarization, dispersion, 

exchange repulsion and charge transfer. Each of these intermolecular interactions is 

derived from first principles, based on truncated expansions. The Coulomb and induction 
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interactions are the same as in EFP1. The exchange repulsion interaction is derived from 

a power expansion in the intermolecular overlap, truncated at the second order, expressed 

in terms of LMOs.8 The dispersion interaction is modeled with LMO dynamic (imaginary 

frequency) polarizability tensors obtained from time-dependent Hartree-Fock 

calculations.9 The charge transfer interaction term is obtained using a second-order 

perturbative treatment, and is also derived based on an expansion in the intermolecular 

overlap, neglecting second and higher order terms.10 All of the required EFP2 input 

parameters are generated in one ab initio preparative calculation on the isolated 

individual molecule. There is no empirical parameterization and EFP2 can be 

systematically improved by including higher order terms in the expansions. In the 

following, EFP2 will be called, simply, EFP. 

 The charge transfer (CT) interaction may be defined as the energy stabilization 

due to the mixing of the occupied orbitals of one molecule with the virtual orbitals of 

another molecule. The CT interaction can be important in ionic and polar molecular 

systems such as water.11 Previously the CT energy and gradient between two EFP 

fragments were derived and implemented using a perturbative approach with SCF 

canonical molecular orbitals (CMOs) (both occupied and virtual orbitals).10 The CT 

interaction is the most time-consuming part of an EFP calculation, mainly due to the 

large number of canonical virtual orbitals when reliable basis sets are used. The goal of 

the present work is to present a new implementation that decreases the number of virtual 

orbitals used in the calculation, while retaining the accuracy of the original method. This 

goal is accomplished by making use of the quasiatomic minimal-basis-set orbitals 

(QUAMBOs), a localized orbital-based method developed by Ruedenberg and co-
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workers.12 QUAMBOs may be thought of as the virtual orbital complement of the 

valence occupied space of a molecule. They therefore provide a natural set of virtual 

orbitals with which to determine the majority of the charge transfer interaction energy.  

 The reduced variational space (RVS) method is an energy decomposition analysis 

algorithm proposed by Stevens and Fink13 which is closely related to the commonly used 

Kitaura-Morokuma (KM) energy decompoisition analysis (EDA)14. Both analyses 

partition the interaction energy, at the Hartree-Fock level of theory, into 

electrostatic/Coulomb, polarization, exchange and charge transfer components. It has 

been demonstrated that the RVS interaction energy components are better behaved than 

their counterparts in the KM analysis when the orbital interactions are strong.13 This is 

because the corresponding wave function from which the RVS component energies are 

obtained is antisymmetrized. Since the EFP-EFP CT formula is also derived using the 

antisymmetrized wave function as the zeroth order wave function, the numerical results 

from EFP and RVS are comparable. RVS CT results serve as benchmark numbers in this 

study. 

This paper is organized as follows. The derivation of the EFP charge transfer 

energy and gradients has been described in a previous paper in detail10 and is only briefly 

summarized here in Sec. II A. The formulation of QUAMBOs is also detailed in another 

paper12 and is only briefly described in Sec II B. The computational methodology used in 

this study is summarized in Sec. III A. Numerical results are discussed in Sec III B. 

Conclusions are drawn in Sec IV.  



www.manaraa.com

	   26	  

Theory  

A.	  EFP2	  Charge	  transfer	  interaction	  

The detailed derivation of the EFP-EFP charge transfer energy and gradient was 

presented in a previous paper10 using a second-order perturbative treatment with CMOs. 

The key steps and important approximations in the derivation are summarized here.   

The starting point is the expression for the energy of a closed-shell molecule M 

with nonorthogonal molecular orbitals: 

EM = 2 hikSik
−1 + Sik

−1 (2 ik rs −
s

occM

∑
r

occM

∑
k

occM

∑
i

occM

∑
k

occM

∑
i

occM

∑ ir ks )Srs
−1 + Enuc  (1) 

where i, k, r and s are the occupied orbitals of molecule M (thus, the upper limit occM on 

the summations). hik is a one-electron integral,  2<ik|rs>-<ir|ks> are the two-electron 

integrals, S is the matrix of overlap integrals, and Enuc is the nuclear repulsion energy. 

The molecular orbitals can be non-orthogonal and non-normalized but they are linearly 

independent.  

Next, using the definition15 

S−1 = I − P          (2) 

and substituting Eq (2) into Eq (1), one obtains 

EM = 2 hik δ ik − Pik
M( )

k

occM

∑
i

occM

∑

+ δ ik − Pik
M( )

k

occM

∑
i

occM

∑ × 2 ik rs − ir ks( )
s

occM

∑
r

occM

∑ δrs − Prs
M( ) + Enuc

  (3) 

Now, to approach the intermolecular interaction in a perturbative manner, suppose 

two weakly interacting molecules A and B form a supermolecule; then the zero-order 
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wave function, , for the supermolecule is the antisymmetrized product wave function 

formed from wave functions that describe A and B.  

Let H be the full Hamiltonian, including the perturbation. Then the zeroth + first 

order energy is: 

EAB
(0) + EAB

(1) = Ψ(0) H Ψ(0)

= 2 hik
AB δ ik − Pik

AB( )
k

occAB

∑
i

occAB

∑

+ δ ik − Pik
AB( )

k

occAB

∑
i

occAB

∑ 2 ik rs − ir ks( )
s

occAB

∑
r

occAB

∑ δrs − Prs
AB( ) + Enuc

  (4) 

where the indices i, k, r and s represent the occupied MOs of isolated A and B.  

 and  are the zeroth- and first-order energies of the system. hAB includes the 

electron kinetic energy plus the electron-nuclear attraction from both molecules: 

hAB = T + V nucA + V nucB        (5) 

The superscript AB on P means that the overlap matrix used to define the P matrix is the 

overlap matrix of the supermolecule AB. If the orbitals are normalized, the diagonal 

elements of the overlap matrix are unity and one can separate the off-diagonal part of the 

matrix: 

S
~

= S − I          (6) 

Then, the P matrix can be expanded in terms of : 

P = I − S−1 = I − (I + S
~
)−1 = I − (I − S

~
+ S2

~

− S3
~

+ ...) = S
~
− S2

~

+ S3
~

− ...  (7) 

For those off-diagonal elements in which both orbitals belong to the same molecule, the 

leading term in the expansion is the quadratic power of S because the orbitals within the 

same molecule are orthogonal. Suppose both i and k are MOs on atom A, 

Ψ(0)

EAB
(0) EAB

(1)

S
~
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Pik
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  (8) 

If the two indices are from different molecules, the leading term of P contains the first 

power of S.  

Pij
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~
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~

ij + (S3)
~

ij− ... ≈ S
~

ij− S
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ik S
~

kj−
k
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~
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~

lj
l

occB

∑

= S
~

ij = (Sij − Iij ) = Sij

   (9) 

The original EFP charge transfer formula resulted from truncating the 2nd and higher 

order powers of S in the expansion of P. 

Now, let i, k, r and s be the occupied MOs of A and j, l, t and w be the occupied 

MOs of B. Substituting Eqs (8) and (9) into Eq (4) gives 
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          (10) 

Let Ψ(1) = Ψ(0) + Ψ '  where Ψ '  is the first order correction to the zeroth order 

wavefunction Ψ(0)
:  

The second order perturbation energy is then obtained as  

EAB
(2) = Ψ(0) H Ψ(1) − Ψ(0) H Ψ(0)      (11) 

By definition, the energy lowering when the occupied MOs of A mix with the 

virtual MOs of B is referred to as the charge transfer energy of A due to B. The first-

order perturbed wavefunction of one molecule is obtained by mixing in the virtual MOs 

of the other molecule. For example, the first-order perturbed MO i on molecule A is  

Ψ i
A(1) = Ψ i

A(0) + UinΨn
B(0)

n

virB

∑        (12) 

where U is the mixing coefficient matrix.  

Substituting Eq (12) into Eq (10) and collecting the energy changes due to the mixing 

from virtual orbitals of B, one obtains the change transfer energy of A due to B. Note that 

if both the bra and ket wavefunctions are from molecule A, only one of them is perturbed 

(e.g., see Eq. 11). In this paper, Ψ i
A(0) and Ψr

A(0) are conveniently chosen to be perturbed 

to Ψ i
A(1) and Ψr

A(1) . Ψk
A(0)  and Ψ s

A(0) are unperturbed. 

Combining the contributions to the energy change from each term in Eq. (10) and 

splitting the one-electron operator hAB into the kinetic energy operator and the nuclear 

attraction operators from A and B, the CT energy of molecule A due to the presence of B 

is 
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CT A(B) = 2 Uin Tin + Vin
nucA + 2 in kk − ik nk( )

k

occA

∑ + Vin
nucB + 2 in jj − ij nj( )

j

occB

∑
#

$
%

&

'
(

n

virB

∑
i

occA

∑

−2 Uin Tnj + Vnj
nucB + 2 nj ll − nl jl( )

l

occB

∑ + Vnj
nucA + 2 nj kk − nk jk( )

k

occA

∑#

$
%

&

'
(

j

occB

∑
n

virB

∑
i

occA

∑ Sij

  

           (13) 

Further simplification includes  

Tnj + Vnj
nucB + 2 nj ll − nl jl( )

l

occB

∑ = Fnj
B = 0,   n ∈virB,  j ∈occB   (14) 

where n and j belong to the virtual and occupied orbitals of molecule B, respectively. 

This is because, for CMOs, the off-diagonal elements of the Fock operator are zero. 

Likewise, 

Tin + Vin
nucA + 2 in kk − ik nk( )

k

occA

∑ = Fin
A = 0,   i ∈occA,  n ∈virB   (15) 

In Eq. (15), i is an index for the MOs of A andΨn
B(0) is assumed to be orthogonal to all the 

MOs of A. This is enforced by the following approximate orthonormalization procedure 

Φn
B(0) =

1

1− Snm( )2

m

allA∑
Ψn

B(0) − SnmΨm
A(0)

m

allA

∑⎛
⎝⎜

⎞
⎠⎟

,   n ∈virB    (16) 

where Φ is the MO after orthonormalization. To simplify Eq. (14) further, two sets of 

approximations can be applied. The first set [Eqs. (17) and (18)] neglects the exchange 

integrals and approximates the Coulomb integrals with the multipole expansion as the 

electrostatic potential of the molecule, truncated at the quadrupole: 

Vin
nucB + 2 in jj − ij nj( )

j

occB

∑ ≈Vin
nucB + 2 in jj

j

occB

∑ ≈Vin
EFB ,    i ∈occA, n ∈virB  (17) 

Vnj
nucA + 2 nj kk − nk jk( )

k

occA

∑ ≈Vnj
nucA + 2 nj kk

k

occA

∑ ≈Vnj
EFA ,   n ∈virB,  j ∈occB

  
(18)
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The superscripts EFA and EFB represent the potentials of molecules A and B, 

respectively, described by a distributed multipole expansion. The other possible set of 

approximations [Eqs.(19) and (20)] set the Fock matrix to zero if the two indices are 

either from different molecules (Eq. (19)) or from the occupied and virtual orbitals of the 

same molecule (Eq. (20)).  

Vin
nucB + 2 in jj − ij nj( )

j

occB

∑ = Fin
B − Tin ≈ −Tin ,    i ∈occA, n ∈virB    (19) 

Vnj
nucA + 2 nj kk − nk jk( )

k

occA

∑ = Fnj
A − Tnj ≈ −Tnj ,   n ∈virB,  j ∈occB   (20) 

Different combinations of Eqs (17)-(20) can result in four possible formulae (see 

Appendix). Previously, it was demonstrated that the combination of Eqs (17) and (20) 

gives the most accurate numerical results when compared with values obtained from a 

reduced variational space (RVS) analysis.10,13 When the valence virtual orbitals (see 

Section IIB) are used, numerical tests show that this combination still gives the best 

results (see Appendix).  

Applying Eqs. (17) and (20) to Eq. (13) results in 

CT A(B) = 2 Uin Vin
EFB + TnjSij

j

occB

∑
⎛

⎝⎜
⎞

⎠⎟n

virB

∑
i

occA

∑      (21) 

The mixing coefficient matrix element Uin is approximated as10 

Uin ≈
Ψ i

A(0) V EFB Ψn
B(0)

εi
A − εn

A =
Ψ i

A(0) V EFB Ψn
B(0)

Fii
A − Fnn

A ,   i ∈occA,  n ∈virB  (22) 

In Eq. (22) VEFB is the multipole potential defined in Eq (17). εi
A  is the orbital energy of 

Ψ i
A , which equals the corresponding diagonal element of the Fock matrix, Fii

A . εn
A , on 
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the other hand, is the orbital energy of when it is assumed to be orthonormal to the 

virtual MOs of molecule A (enforced by Eq. (16)). εn
A can also be written as a Fock 

matrix element, Fnn
A , in an analogous manner:  

Fnn
A = Tnn + Vnn

nucA + 2 nn ii − ni ni( )
i

occA

∑ = Tnn + Vnn
EFA − ni ni

i

occA

∑ ,    n ∈vir. B  (23) 

The last equality in Eq. (23) is obtained using Eq. (18). It is important to realize that Fnn
A  

is not related to Fnn
B . The latter is the orbital energy of ψ n

B determined by diagonalizing 

the Fock matrix of isolated B. Therefore Fnn
A  is not a quantity that can be obtained from 

the preparative ab initio calculation on the isolated molecule that is used to construct an 

EFP. Since ψ n and ψ i  are from different molecules, the exchange term ni ni  and the 

potential energy due to the multipole charge distribution on fragment A, Vnn
EFA , in Eq. (23) 

are relatively small and can be neglected. ( Fnn
A ≈ Tnn ) Numerical tests were done 

previously to justify this approximation.10 Hence the final form for the mixing coefficient 

matrix U is 

Uin ≈
Vin

EFB

Fii
A − Tnn

        (24) 

Combining Eqs. (21) and (24) and replacing ψ n
B  with Eq. (16), one obtains the final form 

of the charge transfer energy expression as 

CT A(B) = 2 1
1− Snm( )2

m

allA
∑

×
Vin

EFB − SnmVim
EFB

m

allA
∑
Fii

A −Tnn( )n

virB

∑
i

occA

∑

× Vin
EFB − SnmVim

EFB

m

allA

∑ + Sij Tnj − SnmTmj
m

allA

∑
$

%
&

'

(
)

j

occB

∑
*

+
,
,

-

.
/
/

    
(25)

 

Ψn
B
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where CTA(B)  is the CT energy of A induced by B.  

Similarly, the CT energy of B induced by A is   

CT B(A) = 2 1
1− Snm( )2

n

allB
∑

×
Vjm

EFA − SnmVjn
EFA

n

allB
∑

Fjj
B −Tmm( )m

virA

∑
j

occB

∑

× Vjm
EFA − SnmVjn

EFA

n

allB

∑ + Sij Tmi − SnmTni
n

allB

∑
$

%
&

'

(
)

i

occA

∑
*

+
,

-

.
/

     (26) 

Since the final CT energy formulation is unaltered by the use of the quasiatomic minimal-

basis-set orbitals, the expression for the gradient remains unchanged from the one that 

was derived previously.10 

 B.	  QUAMBOs	  and	  Valence	  Virtual	  Orbitals	  (VVOs) 

Quasiatomic minimal-basis-set orbitals (QUAMBOs), developed by Ruedenberg 

and coworkers,12 have the following attributes: (i) the number of QUAMBOs equals the 

number of minimal basis set molecular orbitals for the system. (ii) the QUAMBOs 

deviate minimally from the minimal basis set orbitals of the corresponding free atoms of 

that system. Thus QUAMBOs can be viewed as slightly deformed minimal basis atomic 

orbitals. (iii) The formulation of QUAMBOs is independent of the atomic basis sets used.  

The projection of the QUAMBOs onto the SCF virtual space selects a subspace, 

called the virtual valence space, which yields a good approximation to the most important 

correlating orbitals. The most time-consuming part of an EFP CT calculation is the 

computation of the one-electron potential terms. Fundamentally, the bottleneck is the 

huge number of canonical virtual orbitals compared to the number of occupied orbitals. 

Hence, the motivation for using QUAMBOs as the basis for EFP-EFP charge transfer 

calculations is the expectation that the dramatically reduced number of virtual orbitals 
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will diminish the cost of a CT calculation significantly while these chemically important 

“valence virtual orbitals” (VVOs) can capture most of the CT interaction.  

 The full description of QUAMBOs is given in reference 12. A summary of how 

QUAMBOs are constructed is given here.  

 The free-atom minimal basis atomic orbital Aj
* can be expressed in terms of the 

occupied and virtual SCF MOs: 

Aj
* = φnanj

*

n

occ

∑ + φvavj
*

v

vir

∑        (27) 

where anj
* = φn Aj

*  and avj
* = φv Aj

*   

Note that the * here does not represent complex conjugate, but is merely a symbol to 

distinguish the free-atom minimal basis atomic orbitals from QUAMBOs. 
 

The QUAMBO Aj
 can be similarly expanded as 

Aj = φnanj +
n

occ

∑ φvavj
v

vir

∑        (28) 

 with anj = φn Aj  and avj = φv Aj .      (29) 

For both the free-atom minimal basis orbitals, Aj
* and QUAMBOs, Aj, the index j runs 

from 1 to M, with M being the total number of minimal basis set valence atomic orbitals 

in the molecule. One can write M = N + P, where P is the number of virtual valence 

orbitals. The M-dimensional space spanned by the QUAMBOs must also be spanned by 

the N occupied SCF MOs plus the appropriate number (P) of orbitals in the V-

dimensional SCF virtual space.  Calling these virtual orbitals ϕ p , QUAMBO Aj can be 

expressed in terms of the SCF occupied MOs and these ϕ p : 
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Aj = φnanj
n

occ

∑ + ϕ pbpj
p

val .vir

∑        (30) 

and 

  ϕ p = φvTvp
v

vir

∑         (31) 

In Eq. (30) p goes up to the number of minimal basis set virtual orbitals, which equals the 

number of the VVO, P.  

The QUAMBO Aj is constructed in such a way that it deviates as little as possible 

from the free-atom minimal basis atomic orbital Aj
*. This corresponds to minimizing the 

square deviation12 

Aj − Aj
* Aj − Aj

* = 2 1− Aj Aj
*⎡⎣ ⎤⎦ = 2 1− Dj( )1/2⎡

⎣
⎤
⎦    (32) 

where Dj = φn Aj
* 2

n

occ

∑ + ϕ p Aj
* 2

p

val .vir

∑       (33) 

with the normalization condition Aj Aj = 1 and Aj
* Aj

* = 1   

A constrained Lagrange minimization leads to  

Aj = Dj
−1/2 φn φn Aj

*

n

occ

∑ + ϕ p ϕ p Aj
*

p

val .vir

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
     (34) 

So, the QUAMBOs are the normalized projection of the free-atom minimal-basis atomic 

orbitals A* onto the space spanned by the SCF MOs. Combining Eqs. (34), (29) and (31), 

one obtains 

Aj = (Dj
−1/2 φn Aj

* )
n=1

occ

∑ φn + Dj
−1/2

p=1

val .vir

∑ φvTvp φwTwp
w

vir

∑ Aj
*

v

vir

∑

= Dj
−1/2anj

*( )n∑ φn + Dj
−1/2TvpTwpp∑( ) φw Aj

* φvw∑v∑
= anj

' φnn∑ + avj
' φvv∑

   (35) 
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To find anj
'  and avj

' requires the determination of the expansion coefficient matrix T. The 

simultaneous minimization of the quantity in Eq (32) for all QUAMBOs is equivalent to 

maximizing the sum  

 Dj = φn Aj
* 2

n

occ

∑ + ϕ p Aj
* 2

p

val .vir

∑⎡

⎣
⎢

⎤

⎦
⎥j∑

j

min basis

∑     (36) 

Eq. (36) is ultimately achieved by maximizing the sum over the ϕ p (φsum). This is 

because the only variables in Eq. (36) are the elements of the expansion coefficient 

matrix T [Eq. (31)] for ϕ p . 

ϕsum = ϕ p Aj
* 2

p

val .vir

∑
j

min basis

∑

= Tvp φv Aj
*

v

vir

∑⎛⎝⎜
⎞
⎠⎟

Twp φw Aj
*

w

vir

∑⎛⎝⎜
⎞
⎠⎟p

val .vir

∑
j

min basis

∑
= TvpTwpBvww∑v∑p∑

    (37) 

T is defined in Eq. (31) and Bvw = φv Aj
*

j∑ φw Aj
* = avj

* awj
*

j∑  

The B matrix is diagonalized, and the T matrix is formed from the p eigenvectors of B 

with the p largest eigenvalues, i.e. BTp = β pTp , where β p is the pth eigenvalue of the 

matrix B. ϕsum = β pTvpTvpv∑p∑ = β pp∑  is maximized. Once the matrix T is 

determined, the set of P valence virtual orbitals ϕp can be determined using Eq. (31). This 

effectively is a process of optimizing the valence virtual space in such a way that the 

QUAMBOs deviate least from the free-atom minimal basis AOs. Subsequently, the 

normalized expansion coefficients anj
'  and avj

'  are obtained as in Eq. (35). Using these 

QUAMBOs as the atomic basis set, one can obtain orbital energies by diagonalizing the 

corresponding Fock matrix. These orbital energies are then used in the CT energy 
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expression. The diagonalization also recovers the canonical occupied orbitals and 

generates the valence virtual orbitals (VVOs) that are then used in the CT calculations.  

 

Numerical Results and Discussion 

A. Computational Methodology 

The codes for generating VVOs in the preparative ab initio runs to generate an 

EFP, and for using VVOs to calculate the EFP-EFP CT energy and gradient have been 

implemented in the electronic structure quantum chemistry package GAMESS.15 Five 

basis sets [6-31+G(d,p), 6-31++G(d,p), 6-31++G(df,p), 6-311++G(d,p), 6-

311++G(3df,2p)] are used here to test the code. The five dimer systems (Fig. 1) chosen as 

the test systems are water dimer, methanol-water, ammonia-water, ammonium-water and 

ammonium-nitrate, illustrated in Figure 1. These five test systems represent different 

types of charge transfer interactions: the CT interactions between polar neutral molecules, 

between charged molecules and between neutral and charged molecules. In addition, a 

cluster of four pairs of ammonium-nitrate dimers are used as a larger test system since the 

contrast in both the CT energy and the computational time is more apparent. The dimer 

systems were optimized at the RHF/6-31+G(d,p) level of theory and the cluster of 

(ammonium-nitrate)4 was obtained from a previous study10 (Fig. 1). The individual 

molecules in the dimer were used to construct the EFP potentials. The exception is the 

water EFP potential, in which case the geometry used to construct the potential has an O-

H bond length of 0.9468 Å and an H-O-H angle of 106.7°. The RVS analysis13 was 

performed at these optimized geometries with the aforementioned basis sets to obtain the 

benchmark CT energies. The benchmark CT gradients were computed by three-point 
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numerical differencing the EFP CT energies, using step sizes of 0.001 Bohr for 

translation and 0.001 radian for rotation. The CT energies and gradients for the dimer 

systems were computed at both equilibrium and non-equilibrium intermolecular 

distances. To demonstrate time saving for large systems, 7 (H2O)64 clusters, 10 (H2O)128 

clusters and 10 (H2O)256 clusters were chosen as test systems. Single point energy and 

single point energy+gradient calculations were carried out on a single Dell x86_64 CPU 

running at 2660 MHz. The aforementioned calculations were carried out using CMOs as 

well for comparison. All of the calculations were performed using GAMESS.16 

 

B.  Accuracy 

(I) Model systems at equilibrium distances 

Table 1 presents the CT energies of the five dimer systems at equilibrium 

separation and the cluster of four ammonium-nitrates. These energies are calculated in 

three ways: the RVS analysis to give benchmark CT energies, and EFP calculations using 

either CMOs or VVOs for the CT interaction. In most cases, the VVO-calculated CT 

energies are closer to the RVS CT energies than are those obtained from the CMOs. The 

variation of the VVO-calculated CT energies from basis to basis is small (< 0.5 

kcal/mol). In fact, the values hardly change for the three relatively small basis sets [6-

31+G(d,p), 6-31++G(d,p) and 6-31++G(df,p)]. In addition, it is interesting to note that 

the CT energies calculated with VVOs using the largest basis set, 6-311++G(3df,2p), are 

always smaller than those from smaller basis sets. This is expected since the energy 

lowering from the CT interaction arises in part from insufficient monomer basis sets.10,17 

Therefore, one expects the CT energy to decrease as one moves toward the complete 
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basis set limit. Interestingly, this trend is not observed consistently in the RVS 

calculations. For systems involving charged species, such as the ammonium-nitrate pair, 

one can encounter convergence problems and may need to adjust the convergence 

threshold in RVS calculations.  

(II) Non-equilibrium distances 

It is important to ensure that one can predict the CT energy accurately, not only at 

the equilibrium distance but also at other, non-equilibrium, distances. It is particularly 

important to obtain the correct limiting behavior. Taking the equilibrium distance as zero 

and shorter distances as negative, the CT energies were calculated for the five dimer 

systems at various distances away from equilibrium, ranging from -0.5 to 1.2 Å. The five 

dimer systems exhibit similar behavior and therefore only the water dimer system is 

shown in Figure 2.  In most cases, the CT energies predicted using VVOs agree better 

with the RVS results than do those obtained from CMOs. At ~0.5 Å and longer than the 

equilibrium distances, CT energies approach zero as they should. As two molecules get 

closer, the magnitudes of the CT energies increase quickly. Both types of MOs predict 

the correct limiting behavior. The deviation from RVS CT energies increases for both 

types of MOs as the intermolecular distances get smaller than the equilibrium distances; 

but the VVO errors increase less rapidly, creating larger errors only at very small 

intermolecular distances.  In general, VVOs tend to underestimate and CMOs 

overestimate the CT energies relative to the RVS values.  

For water dimer (Fig. 2), the VVO-calculated CT energy error only becomes 

noticeable at about - 0.2 Å, whereas the CMO-predicted CT energy starts to exhibit a 

noticeable discrepancy even around the equilibrium distance. The absolute deviation for 
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VVO-predicted CT energies is generally smaller than that for the CMOs at all distances 

examined. Other dimer systems behave similarly. In all cases, VVOs underestimate the 

CT energies at -0.5 Å. However, this distance may not be of much physical significance 

and distance-dependent screening/scaling might be introduced in the future if necessary. 

In summary, one can expect VVO-predicted EFP2-EFP2 CT interaction energies to be 

quite accurate in the region where most physical and chemical situations occur.  

 

 (III) Gradients 

 The analytic EFP CT gradient code has been modified to use VVOs as an 

alternative option to calculate the EFP-EFP CT gradients. The benchmarking gradient 

results were computed using the numerical gradient code in GAMESS with a step size of 

0.001 bohr for translation and 0.001 radians for rotation. Both analytic and numerical 

gradients are calculated at both the equilibrium and non-equilibrium distances. For all 

calculations, the differences between the analytic and numerical gradients using VVOs 

are within 10-7 Hartree/Bohr.  

 

C. Efficiency/Timing 

Using valence virtual orbitals in the EFP CT formulation greatly reduces the 

number of orbitals used in EFP CT calculations, and this causes a significant reduction in 

the required computer time. Comparative CPU times for one of the (H2O)256 clusters are 

shown in Table II. The time saving is global: for all of the terms in the CT energy 

formula [Eqs. (26) and (27)], the computational times drop by at least 50% compared to 

the times required for the analogous CMO calculations. The total CPU time for an EFP-
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EFP energy calculation and single point gradient calculation for the (NH4
+ --- NO3

-)4 

system are presented in Figures 3(a) and 3(b), respectively. For both energy and gradient 

calculations, the total CPU time increases linearly with the number of basis functions. For 

CMOs, the CPU time increases much more rapidly. The average total CPU time for the 

energy and gradient calculations, respectively, for the 7 (H2O)64 clusters, 10 (H2O)128 

clusters and 10 (H2O)256 clusters are plotted as a function of the number of water 

molecules in Figures 4(a) and 4(b). A linear scaling is again observed. The use of VVOs 

significantly reduces the linear scaling coefficients. As the number of basis functions 

increases or the system size increases, the time saved by using VVOs is amplified. This is 

easily understood because the number of canonical virtual orbitals increases steeply while 

the number of minimal basis orbitals stays the same as the number of basis functions 

increases. Due to this new implementation, molecular dynamical (MD) simulations of 

EFP water clusters are able to run with CT included in the water potential18. In general, 

one can expect a 50% or more time saving when using the recommended EFP basis set, 

6-311++G(3df,2p).  

 

Conclusion  

The occupied + valence virtual orbitals have been implemented as an alternative 

for calculating the EFP-EFP charge transfer energy and gradient. QUAMBOs furnish a 

basis that can exactly expand the SCF occupied orbitals, and projection of QUAMBOs 

onto the virtual space select that part of the virtual space that contains the most important 

correlating orbitals. The number of QUAMBOs is constant for a particular system. 

Therefore, the use of QUAMBOs to obtain VVOs improves the efficiency of EFP-EFP 
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CT calculations markedly while retaining, and in some cases improving the accuracy of 

the CT energies.  
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Appendix  

The different combinations of Eqs. (18) – (21) lead to four possible formulae for CT 

energy of fragment A due to fragment B (Eqs. A1 – A4). Four analogous formulae for the 

charge transfer energy of B due to A are not shown here. 

CT A(B) ≈ 2 1
1− Snm( )2
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CT A(B) ≈ 2 1
1− Snm( )2
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CT A(B) ≈ 2 1
1− Snm( )2
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It is difficult to judge the accuracy of the four formulae without numerical results 

since the various approximations involve all the matrix elements, not just the expectation 

values of an operator. The accuracies could depend on various factors: basis sets, 

electronic structures of the molecules, the shape of the orbitals used, that is, canonical or 

localized.10 In order to determine which formula is the best when using VVOs, the CT 

energies for the five dimer systems are presented in Table III. 

 In all cases tested, Eq. (A2) gives very large positive numbers that are unphysical. 

Eq (A1) significantly underestimates the magnitude of the CT energies. Eq (A3) shows 

unpredictable behavior: large positive numbers for water dimer and ammonium-water 

dimer and underestimated CT energies for the other three systems. Eq. (A4) not only 

produces negative CT energies in all cases but also closest to the RVS benchmarking 

numbers.  
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FIG. 1. The structures of the test systems (from left to right) upper row: water-water, 

methanol-water, ammonia-water; lower row: ammonium-water, ammonium-nitrate and 

(ammonium-nitrate)4.  

  

FIG. 2. EFP-EFP charge transfer energies for water-water dimer at various distances with 

basis sets (a) 6-31+G(d,p), (b) 6-31++G(d,p), (c) 6-31++G(df,p), (d) 6-311++G(d,p) and 

(e) 6-311++G(3df,2p). 

 

FIG. 3. Total CPU time versus number of basis functions using either CMO or VVO, (a) 

EFP-EFP energy calculation, (b) Single-point EFP-EFP gradient calculation. 

 

FIG. 4. Total CPU time versus number of water molecules using CMO vs. VVO, (a) 

EFP-EFP energy calculation, (b) Single-point EFP-EFP gradient calculation. 
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TABLE I. Charge transfer energies (kcal/mol) obtained from the RVS analysis, EFP 

(canonical occupied + virtual molecular orbitals) and EFP (occupied +valence virtual 

orbitals) for the five dimer systems and (ammonium-nitrate)4 system with five basis sets. 

The dimer geometries were optimized with RHF/6-31+G(d,p). 

 Water-water Methanol-water Ammonia-water 

Basis sets RVS CMO VVO RVS CMO VVO RVS CMO VVO 
6-31+G(d,p) -0.55 -0.85 -0.51 -0.53 -0.78 -0.58 -0.91 -1.63 -0.86 

6-31++G(d,p) -0.49 -0.75 -0.51 -0.46 -0.77 -0.58 -0.93 -1.25 -0.85 
6-31++G(df,p) -0.47 -0.79 -0.51 -0.44 -0.81 -0.58 -0.86 -1.32 -0.87 
6-311++G(d,p) -0.53 -0.82 -0.47 -0.51 -0.78 -0.53 -0.95 -0.94 -0.75 

6-311++G(3df,2p) -0.65 -0.44 -0.35 -0.63 -0.31 -0.44 -1.20 -0.18 -0.52 
          
 Ammonium-water Ammonium-nitrate (ammonium-nitrate)4 

Basis sets RVS CMO VVO RVS CMO VVO RVS CMO VVO 
6-31+G(d,p) -2.33 -2.75 -2.05 -7.88 -5.00 -5.36 -15.19 -10.47 -15.32 

6-31++G(d,p) -2.19 -2.64 -2.04 -7.90 -5.53 -5.38 -15.08 -12.45 -15.32 
6-31++G(df,p) -2.12 -2.79 -2.05 -7.85 -6.09 -5.30 -15.10 -13.41 -15.38 
6-311++G(d,p) -2.35 -3.13 -2.03 -8.27 -7.12 -5.30 -15.07 -14.70 -15.19 

6-311++G(3df,2p) -2.85 -1.95 -1.79 -6.98 -3.80 -5.28 -12.76 -8.14 -15.59 
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TABLE II. The CPU time spent for various terms in an EFP-EFP charge transfer energy 

calculation for one (H2O)256 cluster. Other water clusters of the same size give similar 

results. TAA is the kinetic energy integral of fragment A, SAB and TAB are the overlap and 

kinetic energy integrals between fragments A and B, V are the one-electron electrostatic 

potential integrals. For instance, VAA
EFB represents the matrix elements of the 

electrostatic potential due to B.  ECT means assembling of all the terms and calculating the 

charge transfer energy once all of the required integrals are available. Times are in 

seconds. 

 CMO VVO 

TAA 31.66 16.42 

SAB and TAB 8.42 0.37 

VAA
EFB 145.19 15.73 

VBB
EFA 145.76 15.79 

VAB
EFA 75.11 12.93 

VAB
EFB 75.10 13.06 

ECT 2.25 0.01 
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TABLE III. Charge transfer energies (kcal/mol) obtained from Eqs. (A1) – (A4) in the 

Appendix using valence virtual orbitals together with RVS-calculated charge transfer 

energies as benchmarks (in bold) for the five dimer systems: water dimer, methanol-

water, ammonia-water, ammonium-water and ammonium-nitrate. 

Basis set  Water- 
water 

Methanol-
water 

Ammonia-
water 

Ammonium-
water 

Ammonium-
nitrate 

6-31+G(d,p) RVS -0.55 -0.53 -0.91 -2.33 -7.88 
 A1 -0.05 -0.05 -0.07 -0.40 -0.92 
 A2 1.62 1.71 1.29 7.11 13.94 
 A3 2.08 -0.24 -0.32 8.75 -4.82 
 A4 -0.50 -0.58 -0.86 -2.05 -5.36 
       

6-31++G(d,p) RVS -0.49 -0.46 -0.93 -2.19 -7.9 
 A1 -0.05 -0.05 -0.07 -0.40 -0.92 
 A2 1.60 1.67 1.28 7.06 13.87 
 A3 2.06 -0.25 -0.31 8.70 -4.80 
 A4 -0.49 -0.58 -0.85 -2.04 -5.38 
       

6-31++G(df,p) RVS -0.47 -0.44 -0.86 -2.12 -7.85 
 A1 -0.05 -0.05 -0.07 -0.40 -0.92 
 A2 1.62 1.68 1.27 7.08 13.84 
 A3 2.08 -0.25 -0.33 8.74 -4.78 
 A4 -0.50 -0.58 -0.87 -2.05 -5.38 
       

6-311++G(d,p) RVS -0.53 -0.51 -0.95 -2.35 -8.27 
 A1 -0.04 -0.04 -0.05 -0.38 -0.87 
 A2 1.45 1.51 1.08 6.93 13.54 
 A3 1.87 -0.19 -0.26 8.57 -4.40 
 A4 -0.45 -0.53 -0.75 -2.03 -5.30 
       

6-311++G(3df,2p) RVS -0.65 -0.63 -1.2 -2.85 -6.98 
 A1 -0.03 -0.03 -0.03 -0.33 -0.86 
 A2 1.18 1.21 0.77 6.46 13.09 
 A3 1.47 -0.15 -0.16 7.88 -4.36 
 A4 -0.34 -0.44 -0.52 -1.79 -5.28 
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CHAPTER 3 THE R-7 DISPERSION INTERACTION IN THE 

GENERAL EFFECTIVE FRAGMENT POTENTIAL METHOD 

A paper accepted by The Journal of Chemical Theory and Computation 

 

Peng Xu, Federico Zahariev, Mark S. Gordon 

 

Abstract 

The R-7 term (E7) in the dispersion expansion is developed in the framework of 

the general effective fragment potential (EFP2) method, formulated with the dynamic 

anisotropic Cartesian polarizability tensors over the imaginary frequency range. The E7 

formulation is presented in terms of both the total molecular polarizability and the 

localized molecular orbital (LMO) contributions. An origin transformation from the 

center of mass to the LMO centroids is incorporated for the computation of the LMO 

dipole-quadrupole polarizability. The two forms considered for the damping function for 

the R-7 dispersion interaction, the overlap-based and Tang-Toennies damping functions, 

are extensions of the existing damping functions for the R-6 term in the dispersion 

expansion. The R-7 dispersion interaction is highly orientation-dependent: it can be either 

attractive or repulsive, and its magnitude can change substantially as the relative 

orientation of two interacting molecules changes. Although the R-7 dispersion energy 

rotationally averages to zero, it may be significant for systems in which rotational 
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averaging does not occur, such as rotationally rigid molecular systems as in molecular 

solids or constrained surface reactions.  

Introduction 

The dispersion interaction, a non-classical phenomenon, arises from the correlated 

movement of electrons. In the language of a multipole description of the charge 

distributions of molecules, it can be thought of as the interaction between induced 

multipoles. Although weak, the dispersion interaction plays an important role in many 

phenomena.  For example, the dispersion contribution to the water-water hydrogen bond 

is non-trivial1, dispersion is a key component in π-stacking interactions2–5, and provides 

the essence of the binding of noble gases6,7.  

The dispersion interaction energy is often expressed as an expansion in inverse 

powers of the interatomic or intermolecular distance,8 

Edisp = C6R
−6 + C7R

−7 + C8R
−8 +…       (1) 

The Cn coefficients in Eq. (1) are expansion coefficients that may be derived from first 

principles or fitted in some manner, and each term corresponds to one or more induced 

multipole-induced multipole interactions. The dispersion interaction can be formulated in 

terms of second-order Rayleigh-Schrödinger perturbation theory, where the perturbation 

operator is expressed as multipole expansions of the two interacting molecules.9 The R-6 

dispersion interaction term is accounted for by using the dynamic dipole-dipole 

polarizability over the imaginary frequency range.10 The R-7 dispersion term arises from 

the mixing of dipole-dipole interactions with dipole-quadrupole interactions.11 In this 
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paper the R-7 contribution to the dispersion energy will be called E7 for brevity. E7 is 

zero for atoms and centrosymmetric molecules. For non-centrosymmetric molecules, E7 

does depend on the relative orientation of the molecules9,11, and that is an important 

consideration.  

 The effective fragment potential (EFP) method, developed by Gordon and 

coworkers,12 is a discrete method for studying the entire range of intermolecular 

interactions. The original implementation, EFP1, was designed solely for water and 

involves a fitted repulsive potential. The second implementation, the general effective 

fragment potential (EFP2) method contains no fitted parameters and can be generated for 

any (closed-shell) molecule. In this paper, EFP2 will be called EFP unless a distinction 

between EFP1 and EFP2 needs to be made. The interaction energy between two 

molecules/fragments is calculated using properties of the two isolated molecules. The 

required properties are generated in a prior MAKEFP calculation. The interaction energy 

is divided into five components, which may be classified in two categories: the Coulomb 

interaction, polarization/induction and dispersion are long-range interactions (U ~ R-n). 

Exchange repulsion and charge transfer are short-range interactions (U ~ e-αR).  

The EFP Coulomb interaction is modeled by the Stone distributed multipolar 

analysis (DMA) method13,14. The multipole expansion is truncated at the octopole term, 

and the expansion centers are the nuclei and bond midpoints.12 The EFP polarization term 

arises from the interaction between an induced dipole on one fragment and the electric 

field due to all of the other fragments.12 It is modeled with localized molecular orbital 

(LMO) anisotropic static dipole polarizability tensors. The induced dipole is iterated to 

self-consistency, thereby introducing many-body effects. The exchange repulsion term is 
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obtained from a power expansion of the intermolecular LMO overlap integral, truncated 

at the second order in the current implementation.15 Charge transfer (CT) is the 

interaction between the occupied orbitals of one molecule and the virtual orbitals of 

another molecule. The CT interaction between two EFP fragments is derived from a 

second-order perturbative approach.16,17 A power expansion of the intermolecular overlap 

is used for the CT term as well, but the truncation is at first order. The leading term in the 

dispersion interaction, which will be discussed in Section II, is described using the 

dynamic (frequency-dependent) isotropic dipole polarizability of LMOs over the 

imaginary frequency range.18 This gives rise to the isotropic R-6 dispersion energy. 

Currently, the higher order dispersion energy is approximated as one third of this 

isotropic R-6 energy. The goal of this paper is to derive an explicit expression for E7 and 

to evaluate the relative importance of this term.  

This paper is organized as follows: Section II presents a detailed derivation of E7, 

in terms of the Cartesian molecular dynamic polarizability tensors and in terms of LMO 

dynamic polarizability tensors. Implementation of the polarizability and damping 

functions is also described. Computational details, including the benchmarking system 

LiH -- LiH and other dimer systems, are described in Section III. Results are presented 

and discussed in Section IV. Conclusions and future work are provided in Section V. 

Theory 

In the framework of Rayleigh-Schrödinger perturbation theory (RSPT), the 

dispersion interaction energy between two closed-shell nondegenerate ground state 

molecules is part of the second order interaction energy,9,19 
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Edisp = −
< 0A0B |V

^
| mn >< mn |V

^
| 0A0B >

Em
A + En

B − E0
A − E0

B
m≠0
n≠0

∑     (2) 

where 0A and 0B are the ground states of molecules A and B, respectively, and m and n 

are the excited states of molecules A and B, respectively. Correspondingly, Em
A  is the 

energy of the mth excited state of molecule A. The other Es are similarly defined. The 

unperturbed Hamiltonian is the sum of the Hamiltonians of the isolated molecules A and 

B.  

H0

^
= H0

A
^

+ H0
B

^

        (3) 

The perturbation operator V
^

 is the interaction operator, which contains the electrostatic 

interaction between the constituent particles. By expressing the charge distributions of the 

two molecules A and B as two multipole expansions, one can express the interaction 

operator as: 

 V
^

= T ABqAqB + Tα
AB (qAµα

B − µα
AqB )

α

x,y,z

∑ − Tαβ
ABµα

Aµβ
B

α ,β

x,y,z

∑ −
1
3

Tαβγ
AB (µα

Aθβγ
B −θαβ

A µγ
B )

αβγ

x,y,z

∑ ....(4) 

where qA  is the total charge on molecule A. µα
B  is the αth component of the dipole 

moment of molecule B. θβγ
B  is the βγth component of the quadrupole moment of B. The 

electrostatic T tensors are defined as follows: 

T AB =
1

4πε0R
          (5a) 

Tα
AB =

1
4πε0

∇α
1
R

= −
Rα

4πε0R
3        (5b) 
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Tαβ
AB =

1
4πε0

∇α∇β
1
R

=
3RαRβ − R2δαβ

4πε0R
5       (5c) 

Tαβγ
AB =

1
4πε0

∇α∇β∇γ
1
R

= −
15RαRβRγ − 3R2 (Rαδβγ + Rβδαγ + Rγδαβ )

4πε0R
7   (5d) 

where R = B – A.  Here B and A are the expansion center coordinates at which the 

multipole expansions are obtained. At this stage, only a single-center multipole expansion 

for each molecule is carried out. There is some arbitrariness in the definition of the 

multipoles because the choice of the expansion center is arbitrary. The charge is a scalar 

and is independent of the expansion center. The dipole moment of a neutral molecule is 

invariant under a change of the expansion center.9 However, the higher moments, such as 

quadrupole moments, depend on the location of the expansion center. In the literature, 

this phenomenon is commonly referred to as “origin dependence”9,11; in this work the 

word “origin” refers to the expansion center. The convention that is used here is 

discussed in subsequent sections.   

 Consider the total wave function of a system AB in the long-range approximation, 

where there is no significant overlap between the two molecular wave functions and 

hence no exchange effect, then the total wave function is the Hartree product of the 

individual wave functions:  

 0A0B = 0A 0B  and mn = m n      (6) 

Truncating the interaction operator (Eq. (4)) at the dipole-quadrupole term and 

substituting Eqs. (4) and (6) into Eq. (2) gives  
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Edisp =

−

0A 0B Tαβ
ABµα

Aµβ
B m n

αβ

x,y,z

∑ m n Tγσ
ABµγ
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B 0A 0B
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∑
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⎪
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⎪

(Em
A − E0

A ) + (En
B − E0

B )m≠0
n≠0

∑

 

           (7) 

The integrals that involve the charge q may be expressed in the form 

0A qA m = qA 0A m = 0  since q is a scalar and the ground and excited states of the 

same molecule are orthogonal to each other. Hence Eq. (7) starts from the dipole-dipole 

term. From Eqs. (5c) and (5d), Tαβ  and Tγσκ  are of the order R-3 and R-4, respectively. 

Therefore E7 arises from the 2nd and 3rd terms in Eq. (7). The 1st term of Eq. (7) is the 

familiar R-6 dispersion term. The last term in Eq. (7) is part of the R-8 dispersion term, 

which will be discussed in a subsequent paper. Collecting the terms for E7 and 

simplifying the notation by using Em0 = Em − E0 yields 
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E7 = −
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∑

 (8) 

The indices α,β,γ,σ,κ all run over the Cartesian coordinates x, y and z, hence the first and 

second terms in the first equality of Eq. (8) are equivalent and may be combined into one 

term.  The T tensors are constant at a fixed configuration. Rearranging the integrand 

yields, 

 

E7 = −2 Tαβ
ABTγσκ

AB

αβγσκ

x,y,z

∑ 1
Em0

A + En0
B ×

m≠0
n≠0

∑

< 0A | µα
A | m >< m | µγ

A | 0A >< 0B | µβ
B | n >< n | 1

3
θσκ

B | 0B > −

< 0A | µα
A | m >< m | 1

3
θγσ

A | 0A >< 0B | µβ
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B | 0B >

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (9) 

 

The denominator of Eq. (9) is transformed by the Casimir-Polder identity9,20: 

1
A + B

=
2
π

AB
(A2 +ω 2 )(B2 +ω 2 )

dω
0

∞

∫      (10) 

Applying Eq. (10) to the denominator in Eq. (9) yields 

 

1
Em0

A + En0
B =

1


1
ωm0

A +ωn0
B =

2
π

1


dω ωm0
A ωn0

B

(ωm0
A )2 +ω 2⎡⎣ ⎤⎦ (ωn0

B )2 +ω 2⎡⎣ ⎤⎦0

∞

∫  (11) 

Now the integrand can be written as a product of a term involving only A and a term 

involving only B: 
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 (12) 

From time-dependent perturbation theory, one can express the dynamic dipole-dipole and 

dipole-quadrupole polarizabilities as, respectively, 

 
ααβ (ω ) = 2

ωm0 0 µα m m µβ 0
(ωm0

2 −ω 2 )m≠0
∑      (13) 

 
Aα ,βγ (ω ) = 2

ωn0 0 µα n n θβγ 0
(ωn0

2 −ω 2 )n≠0
∑      (14) 

Since ω 2 = −(iω )2 , one can cast the E7 expression in terms of dynamic dipole-

quadrupole polarizability tensors over the imaginary frequency range: 

 

E7 = −2 Tαβ
ABTγσκ

AB

αβγσκ

x,y,z

∑ 2
π

dω
0

∞

∫
1
3
i
1
2
i
1
2
ααγ

A (iω )Aβ ,σκ
B (iω ) − 1

3
i
1
2
i
1
2
αβκ

B (iω )Aα ,γσ
A (iω )⎧

⎨
⎩

⎫
⎬
⎭

= −


3π
Tαβ

ABTγσκ
AB

αβγσκ

x,y,z

∑ dω
0

∞

∫ ααγ
A (iω )Aβ ,σκ

B (iω ) −αβκ
B (iω )Aα ,γσ

A (iω )⎡⎣ ⎤⎦

(15) 

The integral in Eq. (15) is evaluated numerically using a 12-point Gauss-Legendre 

quadrature. By a change of variable, 

ω = ω0
1+ t
1− t

 and dω =
2ω0

(1− t)2 dt ,      (16) 
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the integral in Eq. (15) becomes 

dω
0

∞

∫ ααγ
A (iω )Aβ ,σκ

B (iω ) −αβκ
B (iω )Aα ,γσ

A (iω )⎡⎣ ⎤⎦

= dt 2ω0

(1− t)2−1

1

∫ ααγ
A (iω (t))Aβ ,σκ

B (iω (t)) −αβκ
B (iω (t))Aα ,γσ

A (iω (t))⎡⎣ ⎤⎦

= W (n)
n=1

12

∑ 2ω0

(1− tn )2 ααγ
A (iωn )Aβ ,σκ

B (iωn ) −αβκ
B (iωn )Aα ,γσ

A (iωn )⎡⎣ ⎤⎦

  (17) 

where W(n) and tn are the Gauss-Legendre weights and abscissas, which have been 

determined previously for the R-6 term in the dispersion energy.18,19 The optimal value for 

ω0 is found to be 0.3.21 Now the E7 dispersion energy is 

 
E7 = −


3π

Tαβ
ABTγσκ

AB

αβγσκ

x,y,z

∑ W (n)
n=1

12

∑ 2ω0

(1− tn )2 ααγ
A (iωn )Aβ ,σκ

B (iωn ) −αβκ
B (iωn )Aα ,γσ

A (iωn )⎡⎣ ⎤⎦  

(18) 

A distributed multipole expansion model of the molecule has the advantages that 

one attains improved convergence properties and a better description of the molecular 

charge distribution9,14,22. In particular for dispersion, a distributed treatment portrays a 

more realistic picture of the response of the molecule from non-uniform fields due to 

other molecular systems.  

If one divides the molecule into “regions”, each described by its own multipole 

expansion with its own origin, the interaction operator V has the form9,23,24: 

V
^

= T abqaqb + Tα
ab qaµα

b − µα
aqb( ) + Tαβ

ab 1
3

qaθαβ
b − µα

aµβ
b +

1
3
θαβ

a qb⎛
⎝⎜

⎞
⎠⎟

+ ...⎡
⎣⎢

⎤
⎦⎥b∈B

∑
a∈A
∑  (19) 
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The double sum runs over the expansion centers a of molecule A and b of molecule B.  

The Tab are the electrostatic tensors between two expansion centers a and b. Note that 

Einstein convention, the repeated-subscript summation convention, is used here for 

Cartesian coordinates (suffix) to avoid cumbersome equations. Substituting Eq. (19), 

truncated at the dipole-quadrupole term, into Eq. (2) and combining with Eq. (6) gives, 

Edisp = −

0A 0B Tαβ
abµα

aµβ
b m n m n Tγσ

cdµγ
cµσ

d 0A 0B

+ 0A 0B Tαβ
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b m n m n 1

3
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d −θγσ
c µκ

d ) 0A 0B
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3
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3
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a µγ
b ) m n m n 1

3
Tλσκ

cd (µλ
cθσκ

d −θλσ
c µκ

d ) 0A 0B

⎧

⎨

⎪
⎪
⎪⎪
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⎪
⎪
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⎪
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⎪
⎪
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 (20) 

Each term in the second equality of Eq. (20) can be symbolically represented as 

T abT cdQaQcQbQd

Em0 + En0b,d∈B
∑

a,c∈A
∑

m≠0
n≠0

∑       (21) 
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In Eq. (21) Qa  symbolizes the integral of a multipole moment expanded about the center 

a. By going through the same derivation as the single-expansion-center model, the 

dispersion energy calculated using the distributed model can be symbolically represented 

as 

 

Edisp =
1


2
π

dω ωm0
A ωn0

B T abT cdQaQcQbQd

(ωm0
A )2 +ω 2⎡⎣ ⎤⎦ (ωn0

B )2 +ω 2⎡⎣ ⎤⎦0

∞

∫
b,d∈B
∑

a,c∈A
∑

m≠0
n≠0

∑

=
1


2
π

T abT cd dω
0

∞

∫
ωm0

A QaQc

(ωm0
A )2 +ω 2⎡⎣ ⎤⎦m≠0

∑
⎛

⎝
⎜

⎞

⎠
⎟

ωn0
B QbQd

(ωn0
B )2 +ω 2⎡⎣ ⎤⎦n≠0

∑
⎛

⎝
⎜

⎞

⎠
⎟

b,d∈B
∑

a,c∈A
∑

 (22) 

Note that the two T tensors in Eq. (22) can now be different from each other. The 

terms in large brackets in the second equality in Eq. (22) have the form of a multipole-

multipole dynamic polarizability tensor P [Eq. (23)]. The two multipole moments in Eq. 

(23) do not necessarily have the same expansion centers (that is, a can be different from 

c). 

Pac =
ωm0

A QaQc

(ωm0
A )2 +ω 2⎡⎣ ⎤⎦m≠0

∑         (23) 

Stone and Tong23 termed the polarizability with the same expansion center (a = c) 

as ‘local’. If the expansion centers differ (a ≠ c), the polarizability is termed ‘non-local’. 

The non-local polarizability arises naturally from a distributed formulation in which a 

field in one region causes a response in another region of the same molecule. Stone and 

Tong have shown, in spherical tensor formalism, that the non-local multipole-multipole 

polarizability can be transformed into the local form by a shifting procedure provided that 
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the centers of the moments are not moved too far. This shifting procedure transforms the 

dispersion energy expression to a familiar site-site description: 

 

Edisp =
1


2
π

T abT c→a,d→b dω
0

∞

∫
ωm0

A QaQc→a

(ωm0
A )2 +ω 2⎡⎣ ⎤⎦m≠0
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⎞

⎠
⎟

ωn0
B QbQd→b
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⎟
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∑
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∑

=
1


2
π

T abT ab dω
0

∞

∫ PaPb

b∈B
∑

a∈A
∑

(24) 

Qc→a and Qd→b symbolize the multipole moments whose centers have been shifted. This 

shifting treatment is formally exact at sufficiently long range. Stone and Tong have 

demonstrated that less than 2% error is incurred for small systems using the shifted 

formula23.  

In the EFP method, each LMO is taken to be a distributed “region” and naturally 

the LMO centroids are chosen as the expansion centers. Jensen and Gordon25 introduced 

and implemented the localized charge distribution (LCD) method26–32 for Hatree-Fock 

wave functions, in which the key idea is to partition the nuclear charge and assign part of 

the nuclear charge to a particular LMO predominantly associated with that nucleus. This 

“local” nuclear charge and the electrons in the LMO together constitute an electrically 

neutral LCD. The dipole moments of such neutral localized charge distributions are 

invariant with respect to the shifting. Consequently the dipole-dipole polarizability is the 

same before and after the shift. For the dipole-quadrupole polarizability, one can shift the 

origin of the dipole moment to coincide with the origin of the quadrupole moment, and 

again this gives an LMO dipole-quadrupole polarizability that is identical to that before 

the shift. Thus, the polarizabilities that are relevant to E7 are unchanged and a distributed 
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E7 expression without the non-local polarizabilities can be easily written. The E7 derived 

from the distributed multipole expansion at the centroids of LMOs is 

 
E7(LMO) = −

1
3
!
π

Tαβ
kjTγσκ

kj

αβγσκ

x,y,z

∑ dω
0

∞

∫
j∈B

LMO

∑
k∈A

LMO

∑ ααγ
k (iω )Aβ ,σκ

j (iω ) −αβκ
j (iω )Aα ,γσ

k (iω )-. /0 (25) 

where α k is the dipole-dipole dynamic polarizability of the kth LMO expanded at its 

centroid. Similarly, A j  is the dipole-quadrupole dynamic polarizability of the jth LMO 

expanded at its centroid. This E7 dispersion energy is called E7 (LMO), to distinguish it 

from E7 calculated using molecular polarizabilities, which are called E7 (molecular).   

The molecular dynamic polarizability can be partitioned into LMO contributions: 

PA (ω ) = Pl
A (ω )

l∈A

LMO

∑         (26) 

The decomposition is always valid for polarizabilities of any rank when the LMO 

polarizabilities use the same expansion center as the molecular polarizability. For the 

dipole-dipole polarizability, the dipole moments are invariant with respect to the origins 

as discussed above. So the LMO dynamic dipole polarizability that is obtained at the 

center of mass is equal to the LMO polarizability obtained at the centroids of the LMOs. 

However, the quadrupole moments are origin-dependent, which means the LMO dynamic 

dipole-quadrupole polarizability expanded at the centroids of the LMOs will be different 

from those expanded at the center-of-mass. The dipole-quadrupole polarizabilities 

obtained using different origins are related through the following transformation: 
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Aα ,βγ
' l = Aα ,βγ

l −
3
2

rβ
'αγα

l +
3
2

rγ
'ααβ

l − rκ
'ακα

l δβγ
κ
∑⎛

⎝⎜
⎞
⎠⎟

    (27) 

where r’ is the shift of the origin from the center of mass to the centroid of the lth LMO.

Al  and A' l are the dynamic LMO dipole-quadrupole polarizabilities expanded at the 

center of mass and the centroid of LMO l, respectively.  

Renaming the transformed LMO dipole-quadrupole polarizability as Al (i.e., 

dropping the superscript prime), substituting the transformed Al  into Eq. (25), and 

applying the same Gauss-Legendre numerical integration procedure, the final distributed 

E7 expression becomes 

 

E7(LMO) =

−
1
3
!
π

Tαβ
kjTγσκ

kj

αβγσκ

x,y,z

∑ W (n) 2ω0

(1− tn )2
n=1

12

∑
j∈B

LMO

∑
k∈A

LMO

∑ ααγ
k (iωn )Aβ ,σκ

j (iωn ) −αβκ
j (iωn )Aα ,γσ

k (iωn )+, -.
  

           (28) 

To calculate the LMO dynamic dipole-quadrupole polarizability, the approach 

described by Champagne et al is followed33. The response is calculated in the same way 

as in the dipole-dipole case.10,18  

H (2)H (1) − (iν)2( )Z = −H (2)P       (29) 

H (1) is the real orbital Hessian matrix. 

Haibj
(1) = (εa − εi )δabδ ij + 4(ai | bj) − (ab | ij) − (aj | bi)     (30) 
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where εi and εa are the occupied and virtual Hartree-Fock orbital energies, respectively. 

(ai|bj) etc. are the two-electron integrals over the molecular orbital basis. H (2) is used to 

calculate the magnetizability and is defined as 

Haibj
(2) = (εa − εi )δabδ ij + (ab | ij) − (aj | bi)      (31) 

P in Eq. (29) is the perturbation, and in this case, is the dipole moment matrix, 

Pai = φa µ
^
φi         (32) 

Once the response matrix Z is obtained, it is combined with the quadrupole moment 

integrals to form the dipole-quadrupole polarizability. 

Aα ,βγ (iν) = 2
ai
∑ φ a θ

^

βγ φ i Zα
ai (iν)       (33) 

where the subscripts run over Cartesian coordinates and the superscripts i and a refer to 

the occupied and virtual orbital indices, respectively. Eq (33) gives the molecular dipole-

quadrupole polarizability at the center of mass. The dipole-quadrupole contribution from 

the lth LMO is obtained by transforming the canonical occupied orbitals to localized 

orbitals and summing over only the virtual orbitals. 
 

Aα ,βγ
l (iν) = 2 φ a θ

^

βγ φ i T il

i

occ

∑⎛⎝⎜
⎞
⎠⎟

Zα
ai (iν)T il

i

occ

∑⎛⎝⎜
⎞
⎠⎟a

vir

∑     (34) 

Then the origin shift as in Eq. (27) is carried out to yield the LMO dipole-quadrupole 

polarizability at the respective centroid. 
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As for the R-6 contribution to the dispersion energy, a damping function is 

necessary for E7 to have the correct asymptotic behavior as R approaches zero. Both 

Tang-Toennies34 and overlap-based35 damping functions have been derived. The Tang-

Toennies damping function for E7 has the form 

f7
TT (R) = 1−

bR( )k

k!k=0

7

∑
⎛

⎝⎜
⎞

⎠⎟
exp(−bR)       (35) 

where the parameter b was previously chosen to be 1.5 for the E6 term18,35. The overlap-

based damping function for E7 is 

f7
S = 1− S2 −2 ln | S |( )n

n!n=0

3

∑ = 1− S2 1+ −2 ln | S |( ) +
−2 ln | S |( )2

2!
+

−2 ln | S |( )3

3!
⎛

⎝⎜
⎞

⎠⎟
 (36) 

where S is the matrix of the intermolecular overlap integrals over the LMOs.  

 Codes have been implemented into the GAMESS36,37 software package to 

compute the dynamic molecular dipole-dipole and dipole-quadrupole polarizabilities 

expanded at the center of mass of the molecule, the dynamic LMO dipole-quadrupole 

polarizability expanded at the center of mass of the molecule, the origin shift from the 

center of mass to the LMO centroids for the LMO dipole-quadrupole polarizability, E7 

using the molecular polarizability  (Eq. 15) and using the distributed LMO polarizability 

(Eq. 25), overlap-based and Tang-Toennies damping functions, and auxiliary subroutines 

that write and read the dynamic polarizabilities.  
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The anisotropic R-6 dispersion interaction obtained from the molecular and LMO 

dipole-dipole polarizability, E6 (molecular) and E6 (LMO), respectively, have previously 

been derived18,19: 

 
E6(molecular) = −


2π

Tαβ
ABTσλ

AB αασ
A (iω )αβλ

B (iω )dω
0

∞

∫
αβσλ

x,y,z

∑    (37) 

 
E6(LMO) = −

!
2π

Tαβ
kjTσλ

kj αασ
k (iω )αβλ

j (iω )dω
0

∞

∫
αβσλ

x,y,z

∑
j∈B

LMO

∑
k∈A

LMO

∑    (38) 

These anisotropic E6 expressions have been implemented in GAMESS as well, to 

illustrate the comparisons of the R-6 and R-7 dispersion interaction in this study. 

Computational details 

There are relatively few E7 calculations for molecules of arbitrary geometry in the 

literature, although explicit orientation dependent E7 expressions have been developed38 

for simple systems such as a pair of linear molecules. Magnasco and coworkers have 

done a series of studies on the LiH – LiH system in which they calculated full-CI quality, 

imaginary frequency-dependent dipole-dipole and dipole-quadrupole polarizabilities for 

ground state LiH and C6 and C7 dispersion coefficients for LiH – LiH.39–42 The angle-

dependent Cn dispersion coefficients for two linear molecules is38–42 

Cn (θA ,θB ,ϕ ) = Cn
LA LB M PLA

M (cosθA )PLB

M (cosθB )
LA LB M
∑ cos Mϕ

n = la + la
' + lb + lb

' + 2,    0 ≤ M ≤ min(LA , LB )
| la − la

' |≤ LA ≤ la + la
' ,   | lb − lb

' |≤ LB ≤ lb + lb
'

   (39) 
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The relative orientation of two LiH molecules is schematically illustrated in Fig. 1 in 

whichθA ,θB and ϕ are the angles that specify the relative orientation. The angle θ  varies 

from 0 to π , and the angle ϕ  varies from 0 to 2	  π . In Figure 1, the increments in ϕ  

were taken to be p/4. l  specifies the angular momentum quantum numbers of A and B. 

LA and LB are the resultant total angular momentum L of molecule A and molecule B, 

respectively. The PL
M  in Eq. (39) are the associated Legendre polynomials. The 

coefficient, Cn
LA LB M , is best expressed in terms of irreducible dispersion constants, which 

are linear combinations of elementary dispersion constants 

Cab = 1
2π( ) duαa iu( )αb iu( )

0

∞

∫  where a = lala
' m , b = lblb

' m  are labels specifying 

polarizabilities in spherical tensor form. Given the C7
LA LB M ,40,42 an in-house Python 

program was written to generate LiH – LiH dimers of various relative orientations and to 

calculate C7 (θA ,θB ,ϕ ) and consequently E7 = C7/R7. R is the distance between the 

centers of mass of the two LiH molecules and is kept at 10 Bohr to ensure negligible 

overlap. The E7 values obtained in this manner are taken as the reference (benchmark) 

values against which the EFP E7 values will be compared. The E7 (benchmark) values 

can be directly compared with the EFP E7 (molecular) values since the center of mass is 

the EFP molecular polarizability expansion center and defines the EFP T tensors.  

The molecular dynamic polarizabilities over the imaginary frequency range are 

computed in a preparatory time-dependent Hartree-Fock calculation in GAMESS with 

the 6-311++G(3df,2p) basis set. In the next section, E7 (molecular) is compared directly 

to the E7 (benchmark). The distributed LMO polarizabilities over the same imaginary 

frequency range are generated with the same 6-311++G(3df,2p) basis set, and the 
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expansion centers are shifted to the LMO centroids. The distributed E7, E7 (LMO), is 

calculated according to Eq. (25). 

E6 (molecular), E7 (molecular), E6 (LMO), E7 (LMO), as well as the isotropic 

E6 (molecular) and E6 (LMO) have also been calculated for the following dimer systems: 

Ar, H2, HF, water, ammonia, methane, methanol, and dicholoromethane. The equilibrium 

geometries of these dimer systems are taken from the previous study of the EFP-ab initio 

dispersion interaction.19 All of the monomer EFP potentials are generated with the 6-

311++G(3df,2p) basis set except methanol (6-311++G(2d,2p)) and dicholoromethane (6-

31+G(d)). The SAPT calculations for these two systems were carried out using the 

smaller basis sets due to computational cost. The EFP potential energy curves, both E7 

(LMO) alone and E6 (LMO)+E7 (LMO), have been generated for (H2O)2 and (CH4)2  by 

varying the intermolecular (center of mass to center of mass) distance from -0.8 Å to 0.8 

Å, in increments of 0.2 Å, with respect to the equilibrium distance. Two damped potential 

energy curves, using the Tang-Toennies and overlap-based damping functions have also 

been generated. The E6 (LMO)+E7 (LMO) curves are compared to symmetry adapted 

perturbation theory (SAPT)43 dispersion energies, which are available from previous 

studies19.  All of the calculations described above were performed with the GAMESS 

software package36,37. 

Results and Discussion 

By systematically varying θA ,θB and ϕ  as described in Section III, a total of 200 

different configurations of LiH – LiH dimers were generated. The E7 (molecular) values 

for these configurations, calculated using the molecular dipole-dipole and dipole-
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quadrupole polarizabilities expanded about the center of mass of the individual LiH 

molecules are compared in Table S1 (supporting information) to the E7 (benchmark) 

results by calculating the ratio E7 (molecular)/ E7 (benchmark). The agreement is 

excellent, with an average ratio of ~93% and a standard deviation of ~4%. The deviation 

is most likely attributable to the fact that EFP polarizabilities are generated using time 

dependent Hartree-Fock in which only CIS excited states are included. In contrast, the 

polarizabilities in references 29 and 30 are based on full configuration interaction (FCI). 

For configurations with parallel LiH (θA = θB ), both E7 (benchmark) and E7 (molecular) 

are numerically tiny and are considered to be zero with an undefined ratio.  

To better illustrate the E7 (molecular) trends Figures 2 and 3 are plotted using 

selected data from Table S1. LiH – LiH E7 (molecular) depends on the three angles, 

θA ,θB ,ϕ . To examine the ϕ -dependence, E7 (molecular) values for fixed θA and θB are 

plotted in Fig 2 as a function of ϕ . In Fig. 2, θA = π / 4 is chosen as a representative 

example, and each line represents E7 (molecular) for a particular value of θB . As ϕ  

varies, E7 is almost constant for a particular θA and θB combination. Other θA and θB

combinations behave similarly. It is also interesting to note that E7, unlike E6, can be 

either attractive or repulsive. From Fig 2 it can also be seen that E7 is quite sensitive to 

changes in θB . This observation is much more apparent in Fig. 3. Knowing that E7 is 

rather insensitive to variations of ϕ , Fig. 3 presents E7 with respect to changes of θA  for 

fixedϕ = 0 . Each curve represents a different θB  angle. As θA varies, the order of 

magnitude of E7 changes substantially and in some cases, the sign also changes. Similar 

curves are obtained for varying θB  with fixed θA .  
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By examining the numbers in Fig. 3 and Table 1, some interesting observations 

may be made: The configurations that are symmetric about the lower left to upper right 

diagonal line, (θA ,θB ,ϕ ) and (π −θB ,π −θA ,ϕ ), have identical E7. This is expected 

since they are merely the mirror image of each other. The configurations that are 

symmetric about the upper left to lower right diagonal line have E7s that are ~equal in 

magnitude (difference < 1%) and opposite in sign. Such a relationship is expected from 

Eq. (39) and is verified by EFP calculations. These symmetry relationships are 

maintained for other values of ϕ  and give rise to a rotationally averaged E7 (molecular) 

of zero.   

A direct comparison for E7 (LMO) is difficult. Most distributed models use 

atomic polarizabilities that will (incorrectly) give a zero distributed E7. The centroid of 

the valence LMO of LiH does not coincide with its center of mass and therefore an E7 

calculated using LMOs does not necessarily equal the E7 based on the molecular 

polarizability. However, it can be proved [see Appendix] that if the origins of the two 

interacting molecules are shifted uniformly, that is, in same direction and magnitude, E7 

is invariant. This provides a way to check the origin shift implementation and the 

implementation for calculating E7 (LMO): Instead of shifting the expansion centers of 

the LMO polarizability from the center of mass to the LMO centroids, one can shift the 

expansion centers to an arbitrary point such that the shifting vectors are the same for the 

two interacting molecules. Then the E7 calculated from the molecular polarizability and 

the E7 calculated from this “arbitrarily” distributed polarizability should match. This 

indeed is the case for all of the configurations of LiH—LiH dimers assessed in this study.  
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Table 2 presents E7 (molecular) and E7 (LMO) computed for various dimer 

systems at their equilibrium configurations. Note that for Ar, the molecular dipole-

quadrupole polarizability is the atomic dipole-quadrupole polarizability. Since an atom is 

centrosymmetric, its dipole-quadrupole polarizability is zero and consequently its E7 

(molecular) is also zero. However, atomic LMOs do not necessarily possess an inversion 

center. Hence the LMO dipole-quadrupole polarizability of Ar atom is not zero, nor is E7 

(LMO). The molecule H2 contains an inversion center that also coincides with the H2 

LMO inversion center. It is expected that both molecular and LMO dipole-quadrupole 

polarizability tensors are zero, which give zero E7 (molecular) and E7 (LMO). In some 

cases, E7 (molecular) and E7 (LMO) can have different signs, reflecting the fact that 

different multipole expansions give different descriptions of the potential at a truncated 

finite order. E6 (molecular) and E6 (LMO), as well as their isotropic counterparts for 

these dimer systems are also computed and shown in Table 2. The isotropic E6 

(molecular) deviate very little from the anisotropic E6 (molecular). For the distributed 

model, the deviations between isotropic and anisotropic E6 (LMO) are comparatively 

larger, although the absolute deviation is still less than 0.5 kcal/mol. This validates the 

isotropic approximation. At the equilibrium configurations of these dimer systems, E7 

values (both the molecular and the distributed) are typically only a small fraction of the 

E6 values, although their signs can be different. For  (H2O)2  and (NH3)2, E7 values are ~ 

50% of E6 values and opposite in sign. When the sums E6+E7 are compared to the SAPT 

values, the errors are still relatively large, indicating that the series in Eq. (1) is not 

converged at the R-7 term and at least the R-8 dispersion term is necessary.  
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One interesting observation is that the dispersion contributions calculated from 

molecular and LMO polarizabilities can be strikingly different. For example, E6 (LMO) 

for H2O and NH3 dimers are more than double the corresponding E6 (molecular) values. 

E7 (LMO) and E7 (molecular) can also be rather different. In some cases, E7 (molecular) 

and E7 (LMO) have different signs, not surprising since the E7 sign is not always 

negative. To illustrate how these differences arise, consider the simplest case, isotropic 

E6 (LMO) and E6 (molecular)18,19:  

isotropic E6 (molecular) =
C6

AB

RAB
6 =

α Aα B

RAB
6 =

α k

k∈A
∑
$

%&
'

()
α l

l∈B
∑
$

%&
'

()

RAB
6

=
α kα l

RAB
6

kl

LMO

∑ =
C6

kl

RAB
6

kl

LMO

∑

   (40) 

isotropic E6 (LMO) =
C6

kl

Rkl
6

kl

LMO

∑ =
α kα l

Rkl
6

kl

LMO

∑ 	   	   	   	   	   	   (41) 

where α =
1
3
α xx +α yy +α zz( )  is the isotropic dynamic dipole-dipole polarizability. Since 

the dipole-dipole polarizability is invariant with respect to the origin shift, the molecular 

dipole-dipole polarizability can be partitioned into LMO contributions exactly (See Eq. 

26). Consequently, the dispersion coefficient C6
AB can be partitioned into C6

kl

contributions. The difference between the two E6 expressions in Eqs. 40 and 41 comes 

from the difference between RAB and Rkl. RAB is the distance between the centers of mass 

of A and B. Rkl is the distance between the centroids of LMOs k and l, respectively. By 

an extension of this argument, anisotropic molecular and distributed LMO formulations 

use different T tensors [See Eqs. (37, 38)] and consequently yield different dispersion 
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energies. Moreover, for E7 (LMO), the LMO dipole-quadrupole polarizability is also 

being transformed by the origin-shift formula (Eq. 27). In essence, the different 

definitions of the electrostatic T tensors and the origin shifting transformation are the 

causes of the discrepancy between the dispersion energies calculated with molecular and 

LMO formulations. Fundamentally, the two formulations express the interaction operator 

as two different expansions. The total dispersion energies calculated by the two 

expansions theoretically converge to the same value, just as the oscillator strengths based 

on the dipole length and the dipole velocity converge to the exact result in the limit of a 

full configuration interaction wave function. Conceptually the distributed formulation is 

expected to converge faster by the following argument. A molecular dipole can be 

regarded as two separated point charges, a molecular quadrupole can be considered as 

arising from the separation of two dipoles. In other words, the distributed multipoles of 

lower rank may resemble molecular multipoles of higher rank.44 Consequently, E6 

(LMO) captures higher order dispersion terms such as E7 (molecular) and even higher 

order contributions. So, agreement between the two formulations will be achieved for the 

total dispersion energy when the molecular and distributed multipole expansions are 

carried out to complete order, although there is no one-to-one correspondence between 

the individual terms of the different expansions.   

Figure 4 plots the E7 (LMO) values of two dimer systems, (H2O)2 and (CH4)2, at 

various intermolecular distances, from -0.8 Å to 0.8 Å  with respect to the equilibrium 

distance. Both un-damped values and damped E7 (LMO) using the two different damping 

functions are plotted. As mentioned in Section II, the purpose of the damping function is 

to ensure the correct asymptotic behavior as R approaches zero. From Figure 4, the Tang-
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Toennies function appears to over-damp E7 (LMO), i.e. Tang-Toennies damped E7 

(LMO) tends to be too weak at shorter intermolecular distances. Hence the overlap-based 

damping function is chosen to be the default damping option for EFP-EFP E7 (LMO) 

calculations.  

Figure 5 compares the E6 (LMO)+E7 (LMO) dispersion energies for (H2O)2 and 

(CH4)2 , with or without damping, to the SAPT values. Overall, the overlap-damped 

dispersion curve resembles the SAPT curve better. At short intermolecular distances, the 

overlap-damped (H2O)2 dispersion energy appears to be more negative than the non-

damped value although it is closer to the SAPT value. This is because the non-damped E7 

(LMO) is positive and much larger than the overlap-damped E7 (LMO), which makes the 

sum of E6 and E7 less negative. The Tang-Toennies damping function shows the same 

over-damping problem noted above.   

Conclusion and Future work 

A general expression for the R-7 contribution to the dispersion energy between 

two molecular systems in the EFP framework has been derived and implemented in the 

GAMESS software package. The R-7 dispersion interaction can be computed using either 

molecular (E7 (molecular)) or LMO (E7 (LMO)) dynamic dipole-quadrupole 

polarizability tensors over the imaginary frequency range. The molecular dynamic 

dipole-quadrupole polarizability is computed from the dipole response and the 

quadrupole moments. For E7 (LMO), the proper LMO dynamic dipole-quadrupole 

polarizabilities are obtained after an origin shift transformation from the center of mass to 

the centroids of the LMOs. Two types of damping functions, overlap-based and Tang-
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Toennies damping functions, have been implemented for the calculation of E7 (LMO). 

Both E7 (molecular) and E7 (LMO) magnitudes can change substantially and their signs 

can also change as the relative orientations of the molecules change. In other words, E7 is 

highly orientation-dependent. For systems with constrained configurations, e.g. molecular 

solids or crystal structures or reactions occurring on a surface, E7 could be a significant 

contribution to the total dispersion interaction. E7 is probably is not critical for room 

temperature gas phase or liquid phase structures where molecules are free to rotate and 

the E7 interactions are averaged out. The difference between the dispersion energies 

calculated with molecular and LMO polarizabilities is a manifestation of different 

expansions of the interaction operator truncated at a finite order. The comparison 

between SAPT with E6+E7 values suggests that the dispersion series is not converged at 

E7 and at least R-8 dispersion term should be added. The distributed formulation is 

expected to converge faster. Although this work has been presented in the context of the 

effective fragment potential method, the conclusions that are drawn here are very likely 

applicable to fully quantum calculations as well. 

In order to perform geometry optimizations and molecular dynamics simulations, 

gradients of the R-7 dispersion energy will be the focus of future studies. 
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Appendix  

Since the dipole-quadrupole polarizability is origin-dependent, the question to ask 

naturally is, is E7 also origin-dependent? 

Suppose the shift of the expansion centers is rA '  and rB ' for molecule A and B, 

respectively. Accordingly, the dipole-quadrupole polarizabilities of A and B become, 

Aα ,γσ
A ' = Aα ,γσ

A −
3
2

rγ
A 'ασα

A +
3
2

rσ
A 'ααγ

A − rµ
A 'αµα

A δγσ
⎛
⎝⎜

⎞
⎠⎟     (A1) 

Aβ ,σκ
B ' = Aβ ,σκ

B −
3
2

rσ
B 'ακβ

B +
3
2

rκ
B 'αβσ

B − rµ
B 'αµβ

B δσκ
⎛
⎝⎜

⎞
⎠⎟     (A2) 

The superscripts A and B denote the original expansion centers for molecules A and B, 

respectively. And A’ and B’ denote the new expansion centers. The subscripts denote the 

Cartesian coordinates x, y and z. δ is the Kronecker delta function. Note that due to the 

origin-shift, the T tensors are also altered. Therefore now the E7 expression becomes 
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3π
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           (A3) 

From Eq. (A3), E7 calculated from these new polarizabilities, in general, do not 

necessarily equal to the E7 calculated previously.  
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However, if rA ' = rB ' = r ' , i.e. uniform translation of the origins, the T tensors are 

unchanged because the intermolecular distance R that defines the T tensors remains the 

same. Now Eq (A3) becomes 
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The change in E7 is  
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Since the dipole-dipole polarizability is symmetric with respect to interchange of the two 

suffixes, the 1st and the second last terms in Eq. (A5) cancel each other. By the definition 

of the T tensors, the T tensors with two or more suffixes are invariant with respect to 

interchange of suffixes. The 2nd and 4th terms can be rewritten as 

−
3
2

Tβα
ABααγ

A (iω )Tγσκ
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'ασβ
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+
3
2
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       (A6) 
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Recall that Einstein summation convention is used here: a repeated subscript implies 

summation over that subscript. Therefore one can see that the two terms in (A6) are equal 

in magnitude and opposite in sign, and hence cancel each other. The 3rd term in Eq. (A5) 

is 

Tαβ
ABTγσκ

ABααγ
A (iω )rµ

'αµβ
B (iω )δσκ = (Tγσκ

ABδσκ )αγα
A (iω )Tαβ

ABαβµ
B (iω )rµ

'   (A7) 

The term in the parenthesis 

Tγσκ
ABδσκ = Tγσσ

AB

=
15Rγ Rσ Rσ − 3R2 Rγδσσ + Rσδγσ + Rσδγσ( )

R7

=
15Rγ R2 − 3R2 3Rγ + 2Rσδγσ( )

R7

=
15Rγ R2 − 3R2 3Rγ + 2Rγ( )

R7

=
15Rγ R2 −15R2Rγ

R7

= 0

    (A8) 

Again, the Einstein summation convention is implied here. Hence the 3rd term, and 

similarly the last term, in Eq. (A5) are both zero. So, overall E7 is unchanged when the 

origin-shifts are the same for both molecules.  
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Figure	  1	  a	  schematic	  representation	  of	  LiH	  –	  LiH	  dimer.	  The	  LiH	  molecules	  intersect	  

with	  Z-‐axis	   at	   their	   centers	   of	  mass.	  R	   is	   the	  distance	  between	   the	   two	   centers	   of	  

mass,	  which	  is	  set	  to	  10	  Bohr	  in	  this	  study.	  	  
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Figure	  2	  E7	  (in	  10-‐4	  Hartree)	  as	  a	  function	  of	  the	  angle	  ϕ ,	  calculated	  from	  dynamic	  

molecular	  polarizabilities	  over	   the	   imaginary	   frequency	  range	   for	  LiH	  –	  LiH	  dimer	  

with	  θA = π 4 ,	  θB varying	   from	   0	   to	  π and	  ϕ from	   0	   to	  2π ,	   in	   increments	   of	  π 4 ,	  

from	  the	  top	  line	  to	  the	  bottom	  line.	  
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Figure	  3	  E7	  (in	  10-‐4	  Hartree)	  as	  a	  function	  of	  the	  angle	  θA ,	  calculated	  from	  dynamic	  

molecular	  polarizabilities	  over	   the	   imaginary	   frequency	  range	   for	  LiH	  –	  LiH	  dimer	  

with	  ϕ = 0 ,	  θB varying	   from	  0	   to	  π 	  in	   increments	  of	  π 4 ,	   from	   the	   top	   line	   to	   the	  

bottom	  line.	  
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Figure	   4	   	   (a)	   water	   dimer	   (b)	   methane	   dimer:	   E7	   (LMO)	   calculated	   at	   various	  

intermolecular	   distances	   ranging	   from	   -‐0.8	   to	   +0.8	  Å	   away	   from	   the	   equilibrium	  

distance.	  The	  effect	  of	  two	  types	  of	  damping	  function	  are	  also	  shown	  in	  the	  figure:	  

the	   red	   squares	   represent	   the	   damped	   E7	   (LMO)	   by	   an	   overlap-‐based	   damping	  

function	   and	   the	   green	   triangles	   represent	   the	   damped	   E7	   (LMO)	   by	   the	   Tang-‐

Toennies	  damping	  function.	  	  
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Figure	   5	   	   (a)	   water	   dimer	   (b)	   methane	   dimer:	   E6	   (LMO)+E7	   (LMO)	   dispersion	  

energy	   calculated	   at	   various	   intermolecular	   distances	   ranging	   from	   -‐0.8	   to	   0.8	  Å	  

away	  from	  the	  equilibrium	  distance.	  The	  effect	  of	  the	  two	  types	  of	  damping	  function	  

are	   also	   shown	   in	   the	   figure:	   the	   red	   squares	   represent	   the	   damped	   dispersion	  

energy	  by	  an	  overlap-‐based	  damping	  function	  and	  the	  green	  triangles	  represent	  the	  

damped	  dispersion	  by	  the	  Tang-‐Tonnies	  damping	  function.	  The	  SAPT	  numbers	  are	  

shown	  as	  brown	  triangles.	  
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Table 1 E7 (molecular) (in Hartree) calculated from dynamic molecular polarizabilities 

over the imaginary frequency range for LiH – LiH dimer for ϕ = 0 , θA (the	  x-‐axis)	  and 

θB (the	  y-‐axis)	  varying from 0 to π, in increments of π/4.  

 

 

 

θA
θB
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Table 2 E6 (molecular), E7 (molecular), E6 (LMO) and E7 (LMO) for various dimer 

systems at their equilibrium distances, in kcal/mol. Isotropic E6 (molecular) and isotropic 

E6 (LMO) values calculated from LMO dipole polarizabilities are also presented. The 

SAPT dispersion+exchange dispersion values are listed here as well.  

 

 SAPT E6 
molecular 

E6 
molecular 
isotropic 

E7 molecular 
 

E6 
LMO 

E6 
LMO 

isotropic 

E7 
LMO 

 
2Ar -0.390 -0.265 -0.265 0.000 -0.285 -0.295 0.002 
2H2 -0.087 -0.058 -0.057 0.000 -0.058 -0.057 0.000 
2HF -1.661 -0.527 -0.499 -0.138 -0.777 -0.661 -0.059 
2H2O -2.191 -0.787 -0.788 -0.107 -1.554 -1.095 0.573 
2NH3 -1.909 -0.736 -0.739 -0.046 -1.526 -1.111 0.718 
2CH4 -0.736 -0.415 -0.415 0.002 -0.509 -0.570 0.010 

2MeOH -2.253 -0.960 -0.944 0.641 -1.476 -1.252 0.373 
2CH2Cl2 -2.074 -1.197 -1.314 -0.022 -1.802 -1.913 0.421 
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Supporting information 

Table S1 E7 (benchmark) and E7 (molecular), in Hartree, computed for different 

combination of θA ,θB ,ϕ( ) , with θ ranging from 0 to π  and ϕ from 0 to 7π / 4  radians. 

The energies are in scientific notation to make the change of E7 more apparent.  The ratio 

of E7 (molecular)/E7 (benchmark) is in the last column as a percentage. 

ΘA ΘB φ E7 (benchmark) E7 (molecular) E7 (molecular)/ 
E7 (benchmark) % 

      
0 0 0 -1.69E-21 1.09E-56 / 
0 0 π/4 -1.69E-21 4.59E-21 / 
0 0 2π/4 -1.69E-21 -3.34E-44 / 
0 0 3π/4 -1.69E-21 4.59E-21 / 
0 0 π -1.69E-21 -3.05E-44 / 
0 0 5π/4 -1.69E-21 4.59E-21 / 
0 0 6π/4 -1.69E-21 -3.34E-44 / 
0 0 7π/4 -1.69E-21 4.59E-21 / 
0 π/4 0 -4.70E-05 -4.04E-05 85.89% 
0 π/4 π/4 -4.70E-05 -4.04E-05 85.89% 
0 π/4 2π/4 -4.70E-05 -4.04E-05 85.89% 
0 π/4 3π/4 -4.70E-05 -4.04E-05 85.89% 
0 π/4 π -4.70E-05 -4.04E-05 85.89% 
0 π/4 5π/4 -4.70E-05 -4.04E-05 85.89% 
0 π/4 6π/4 -4.70E-05 -4.04E-05 85.89% 
0 π/4 7π/4 -4.70E-05 -4.04E-05 85.89% 
0 2π/4 0 -1.33E-04 -1.23E-04 92.52% 
0 2π/4 π/4 -1.33E-04 -1.23E-04 92.52% 
0 2π/4 2π/4 -1.33E-04 -1.23E-04 92.52% 
0 2π/4 3π/4 -1.33E-04 -1.23E-04 92.52% 
0 2π/4 π -1.33E-04 -1.23E-04 92.52% 
0 2π/4 5π/4 -1.33E-04 -1.23E-04 92.52% 
0 2π/4 6π/4 -1.33E-04 -1.23E-04 92.52% 
0 2π/4 7π/4 -1.33E-04 -1.23E-04 92.52% 
0 3π/4 0 -2.10E-04 -1.98E-04 94.38% 
0 3π/4 π/4 -2.10E-04 -1.98E-04 94.38% 
0 3π/4 2π/4 -2.10E-04 -1.98E-04 94.38% 
0 3π/4 3π/4 -2.10E-04 -1.98E-04 94.38% 
0 3π/4 π -2.10E-04 -1.98E-04 94.38% 
0 3π/4 5π/4 -2.10E-04 -1.98E-04 94.38% 
0 3π/4 6π/4 -2.10E-04 -1.98E-04 94.38% 
0 3π/4 7π/4 -2.10E-04 -1.98E-04 94.38% 
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Table	  S1	  continued	  
0 π 0 -2.49E-04 -2.32E-04 93.15% 
0 π π/4 -2.49E-04 -2.32E-04 93.15% 
0 π 2π/4 -2.49E-04 -2.32E-04 93.15% 
0 π 3π/4 -2.49E-04 -2.32E-04 93.15% 
0 π π -2.49E-04 -2.32E-04 93.15% 
0 π 5π/4 -2.49E-04 -2.32E-04 93.15% 
0 π 6π/4 -2.49E-04 -2.32E-04 93.15% 
0 π 7π/4 -2.49E-04 -2.32E-04 93.15% 
π/4 0 0 4.70E-05 4.04E-05 85.91% 
π/4 0 π/4 4.70E-05 4.04E-05 85.91% 
π/4 0 2π/4 4.70E-05 4.04E-05 85.91% 
π/4 0 3π/4 4.70E-05 4.04E-05 85.91% 
π/4 0 π 4.70E-05 4.04E-05 85.91% 
π/4 0 5π/4 4.70E-05 4.04E-05 85.91% 
π/4 0 6π/4 4.70E-05 4.04E-05 85.91% 
π/4 0 7π/4 4.70E-05 4.04E-05 85.91% 
π/4 π/4 0 -7.34E-21 1.18E-15 / 
π/4 π/4 π/4 -8.43E-21 -1.37E-08 / 
π/4 π/4 2π/4 -3.10E-21 -4.71E-08 / 
π/4 π/4 3π/4 4.28E-21 -8.05E-08 / 
π/4 π/4 π 5.47E-21 -9.43E-08 / 
π/4 π/4 5π/4 4.52E-21 -8.05E-08 / 
π/4 π/4 6π/4 -2.83E-21 -4.71E-08 / 
π/4 π/4 7π/4 -8.23E-21 -1.37E-08 / 
π/4 2π/4 0 -8.58E-05 -8.25E-05 96.21% 
π/4 2π/4 π/4 -8.62E-05 -8.29E-05 96.15% 
π/4 2π/4 2π/4 -8.70E-05 -8.36E-05 96.01% 
π/4 2π/4 3π/4 -8.77E-05 -8.41E-05 95.86% 
π/4 2π/4 π -8.80E-05 -8.43E-05 95.79% 
π/4 2π/4 5π/4 -8.77E-05 -8.41E-05 95.86% 
π/4 2π/4 6π/4 -8.70E-05 -8.36E-05 96.01% 
π/4 2π/4 7π/4 -8.62E-05 -8.29E-05 96.15% 
π/4 3π/4 0 -1.66E-04 -1.61E-04 96.56% 
π/4 3π/4 π/4 -1.67E-04 -1.61E-04 96.51% 
π/4 3π/4 2π/4 -1.69E-04 -1.63E-04 96.38% 
π/4 3π/4 3π/4 -1.70E-04 -1.64E-04 96.26% 
π/4 3π/4 π -1.71E-04 -1.64E-04 96.21% 
π/4 3π/4 5π/4 -1.70E-04 -1.64E-04 96.26% 
π/4 3π/4 6π/4 -1.69E-04 -1.63E-04 96.38% 
π/4 3π/4 7π/4 -1.67E-04 -1.61E-04 96.51% 
π/4 π 0 -2.10E-04 -1.98E-04 94.38% 
π/4 π π/4 -2.10E-04 -1.98E-04 94.38% 
π/4 π 2π/4 -2.10E-04 -1.98E-04 94.38% 
π/4 π 3π/4 -2.10E-04 -1.98E-04 94.38% 
π/4 π π -2.10E-04 -1.98E-04 94.38% 
π/4 π 5π/4 -2.10E-04 -1.98E-04 94.38% 
π/4 π 6π/4 -2.10E-04 -1.98E-04 94.38% 
π/4 π 7π/4 -2.10E-04 -1.98E-04 94.38% 
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Table	  S1	  continued	  
2π/4 0 0 1.33E-04 1.23E-04 92.93% 
2π/4 0 π/4 1.33E-04 1.23E-04 92.93% 
2π/4 0 2π/4 1.33E-04 1.23E-04 92.93% 
2π/4 0 3π/4 1.33E-04 1.23E-04 92.93% 
2π/4 0 π 1.33E-04 1.23E-04 92.93% 
2π/4 0 5π/4 1.33E-04 1.23E-04 92.93% 
2π/4 0 6π/4 1.33E-04 1.23E-04 92.93% 
2π/4 0 7π/4 1.33E-04 1.23E-04 92.93% 
2π/4 π/4 0 8.58E-05 8.28E-05 96.55% 
2π/4 π/4 π/4 8.62E-05 8.31E-05 96.45% 
2π/4 π/4 2π/4 8.70E-05 8.37E-05 96.21% 
2π/4 π/4 3π/4 8.77E-05 8.42E-05 95.96% 
2π/4 π/4 π 8.80E-05 8.43E-05 95.85% 
2π/4 π/4 5π/4 8.77E-05 8.42E-05 95.96% 
2π/4 π/4 6π/4 8.70E-05 8.37E-05 96.21% 
2π/4 π/4 7π/4 8.62E-05 8.31E-05 96.45% 
2π/4 2π/4 0 5.35E-37 -8.66E-21 / 
2π/4 2π/4 π/4 6.74E-37 -2.37E-08 / 
2π/4 2π/4 2π/4 7.64E-37 -8.19E-08 / 
2π/4 2π/4 3π/4 6.92E-37 -1.41E-07 / 
2π/4 2π/4 π 6.90E-37 -1.65E-07 / 
2π/4 2π/4 5π/4 7.34E-37 -1.41E-07 / 
2π/4 2π/4 6π/4 7.94E-37 -8.19E-08 / 
2π/4 2π/4 7π/4 7.01E-37 -2.37E-08 / 
2π/4 3π/4 0 -8.58E-05 -8.25E-05 96.21% 
2π/4 3π/4 π/4 -8.62E-05 -8.29E-05 96.15% 
2π/4 3π/4 2π/4 -8.70E-05 -8.36E-05 96.01% 
2π/4 3π/4 3π/4 -8.77E-05 -8.41E-05 95.86% 
2π/4 3π/4 π -8.80E-05 -8.43E-05 95.79% 
2π/4 3π/4 5π/4 -8.77E-05 -8.41E-05 95.86% 
2π/4 3π/4 6π/4 -8.70E-05 -8.36E-05 96.01% 
2π/4 3π/4 7π/4 -8.62E-05 -8.29E-05 96.15% 
2π/4 π 0 -1.33E-04 -1.23E-04 92.52% 
2π/4 π π/4 -1.33E-04 -1.23E-04 92.52% 
2π/4 π 2π/4 -1.33E-04 -1.23E-04 92.52% 
2π/4 π 3π/4 -1.33E-04 -1.23E-04 92.52% 
2π/4 π π -1.33E-04 -1.23E-04 92.52% 
2π/4 π 5π/4 -1.33E-04 -1.23E-04 92.52% 
2π/4 π 6π/4 -1.33E-04 -1.23E-04 92.52% 
2π/4 π 7π/4 -1.33E-04 -1.23E-04 92.52% 
3π/4 0 0 2.10E-04 2.00E-04 95.18% 
3π/4 0 π/4 2.10E-04 2.00E-04 95.18% 
3π/4 0 2π/4 2.10E-04 2.00E-04 95.18% 
3π/4 0 3π/4 2.10E-04 2.00E-04 95.18% 
3π/4 0 π 2.10E-04 2.00E-04 95.18% 
3π/4 0 5π/4 2.10E-04 2.00E-04 95.18% 
3π/4 0 6π/4 2.10E-04 2.00E-04 95.18% 
3π/4 0 7π/4 2.10E-04 2.00E-04 95.18% 
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Table	  S1	  continued	  
3π/4 π/4 0 1.66E-04 1.62E-04 97.25% 
3π/4 π/4 π/4 1.67E-04 1.62E-04 97.18% 
3π/4 π/4 2π/4 1.69E-04 1.64E-04 97.03% 
3π/4 π/4 3π/4 1.70E-04 1.65E-04 96.87% 
3π/4 π/4 π 1.71E-04 1.65E-04 96.80% 
3π/4 π/4 5π/4 1.70E-04 1.65E-04 96.87% 
3π/4 π/4 6π/4 1.69E-04 1.64E-04 97.03% 
3π/4 π/4 7π/4 1.67E-04 1.62E-04 97.18% 
3π/4 2π/4 0 8.58E-05 8.28E-05 96.55% 
3π/4 2π/4 π/4 8.62E-05 8.31E-05 96.45% 
3π/4 2π/4 2π/4 8.70E-05 8.37E-05 96.21% 
3π/4 2π/4 3π/4 8.77E-05 8.42E-05 95.96% 
3π/4 2π/4 π 8.80E-05 8.43E-05 95.85% 
3π/4 2π/4 5π/4 8.77E-05 8.42E-05 95.96% 
3π/4 2π/4 6π/4 8.70E-05 8.37E-05 96.21% 
3π/4 2π/4 7π/4 8.62E-05 8.31E-05 96.45% 
3π/4 3π/4 0 -3.69E-21 5.38E-16 / 
3π/4 3π/4 π/4 -2.60E-21 -1.37E-08 / 
3π/4 3π/4 2π/4 -8.07E-21 -4.71E-08 / 
3π/4 3π/4 3π/4 -1.60E-20 -8.05E-08 / 
3π/4 3π/4 π -1.73E-20 -9.43E-08 / 
3π/4 3π/4 5π/4 -1.63E-20 -8.05E-08 / 
3π/4 3π/4 6π/4 -8.34E-21 -4.71E-08 / 
3π/4 3π/4 7π/4 -2.89E-21 -1.37E-08 / 
3π/4 π 0 -4.70E-05 -4.04E-05 85.89% 
3π/4 π π/4 -4.70E-05 -4.04E-05 85.89% 
3π/4 π 2π/4 -4.70E-05 -4.04E-05 85.89% 
3π/4 π 3π/4 -4.70E-05 -4.04E-05 85.89% 
3π/4 π π -4.70E-05 -4.04E-05 85.89% 
3π/4 π 5π/4 -4.70E-05 -4.04E-05 85.89% 
3π/4 π 6π/4 -4.70E-05 -4.04E-05 85.89% 
3π/4 π 7π/4 -4.70E-05 -4.04E-05 85.89% 
π 0 0 2.49E-04 2.34E-04 94.10% 
π 0 π/4 2.49E-04 2.34E-04 94.10% 
π 0 2π/4 2.49E-04 2.34E-04 94.10% 
π 0 3π/4 2.49E-04 2.34E-04 94.10% 
π 0 π 2.49E-04 2.34E-04 94.10% 
π 0 5π/4 2.49E-04 2.34E-04 94.10% 
π 0 6π/4 2.49E-04 2.34E-04 94.10% 
π 0 7π/4 2.49E-04 2.34E-04 94.10% 
π π/4 0 2.10E-04 2.00E-04 95.18% 
π π/4 π/4 2.10E-04 2.00E-04 95.18% 
π π/4 2π/4 2.10E-04 2.00E-04 95.18% 
π π/4 3π/4 2.10E-04 2.00E-04 95.18% 
π π/4 π 2.10E-04 2.00E-04 95.18% 
π π/4 5π/4 2.10E-04 2.00E-04 95.18% 
π π/4 6π/4 2.10E-04 2.00E-04 95.18% 
π π/4 7π/4 2.10E-04 2.00E-04 95.18% 
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Table	  S1	  continued	  
π 2π/4 0 1.33E-04 1.23E-04 92.93% 
π 2π/4 π/4 1.33E-04 1.23E-04 92.93% 
π 2π/4 2π/4 1.33E-04 1.23E-04 92.93% 
π 2π/4 3π/4 1.33E-04 1.23E-04 92.93% 
π 2π/4 π 1.33E-04 1.23E-04 92.93% 
π 2π/4 5π/4 1.33E-04 1.23E-04 92.93% 
π 2π/4 6π/4 1.33E-04 1.23E-04 92.93% 
π 2π/4 7π/4 1.33E-04 1.23E-04 92.93% 
π 3π/4 0 4.70E-05 4.04E-05 85.91% 
π 3π/4 π/4 4.70E-05 4.04E-05 85.91% 
π 3π/4 2π/4 4.70E-05 4.04E-05 85.91% 
π 3π/4 3π/4 4.70E-05 4.04E-05 85.91% 
π 3π/4 π 4.70E-05 4.04E-05 85.91% 
π 3π/4 5π/4 4.70E-05 4.04E-05 85.91% 
π 3π/4 6π/4 4.70E-05 4.04E-05 85.91% 
π 3π/4 7π/4 4.70E-05 4.04E-05 85.91% 
π π 0 1.69E-21 -3.88E-55 / 
π π π/4 1.69E-21 -2.44E-21 / 
π π 2π/4 1.69E-21 -3.30E-43 / 
π π 3π/4 1.69E-21 -2.44E-21 / 
π π π 1.69E-21 -3.70E-43 / 
π π 5π/4 1.69E-21 -2.44E-21 / 
π π 6π/4 1.69E-21 -3.30E-43 / 
π π 7π/4 1.69E-21 -2.44E-21 / 
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CHAPTER 4 EXCHANGE REPULSION INTERACTION BETWEEN 

AB INITIO SYSTEM AND EFFECTIVE FRAGMENT POTENTIAL 

FRAGMENTS 

 

Peng Xu and Mark S. Gordon 

Abstract 

Extensive formulation and code modification has been made to the previous 

implementation of exchange repulsion Fock operator (VXR) and energy (EXR) between the 

ab initio (RHF) system and effective fragment potential (EFP) fragments (abbreviated as 

QM-EFP) to allow the presence of multiple EFP fragments. The fully analytic gradient of 

the QM-EFP EXR has been derived and implemented.   

Introduction 

 The effective fragment potential method (EFP)1 has been developed as a 

quantum-mechanics-based model potential to yield accurate (MP2 quality and CCSD(T) 

quality in some cases [ref]) intermolecular interaction energies at very low computational 

cost. The EFP method decomposes the intermolecular interaction into five components: 

Coulomb, polarization, dispersion, exchange repulsion and charge transfer. Depending on 

how these interaction terms are described, namely, the last three terms, there are two 

versions of EFP, EFP1 and EFP2. EFP1 is specifically designed for water by having a 

repulsive term fitted to either the RHF or DFT water dimer potential to account for some 
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of the effect of the last three interactions mentioned above. The RHF-fitted and DFT-

fitted repulsive potentials can account for none and some dynamic correlation, 

respectively. The fitted repulsive potential severely limits the application of EFP because 

an expensive fitting process has to be performed for every new molecular species. EFP2 

is therefore developed with the motivation of having explicit expressions for all of the 

interaction terms without any fitted parameters. Then, an EFP2 potential can be generated 

for any (closed-shell) molecular species. Hence EFP2 is also referred to as the general 

effective fragment potential method. Currently only EFP1 has been fully interfaced with 

ab initio methods so that one can have the chemically important region (e.g., a chemical 

reaction site) described by ab initio methods and the spectator region by rigid EFP 

fragments. The QM-EFP interaction terms are formulated differently from that between 

EFP potentials (EFP-EFP).   For EFP2, QM-EFP Coulomb, polarization and dispersion 

interactions and their corresponding gradients have been developed and implemented into 

the ab initio quantum chemistry package GAMESS23.  

The Pauli exclusion principle gives rise to the exchange repulsion interaction 

between electrons of like spin at short range. Exchange repulsion is a purely quantum-

mechanical effect that does not have a simple classical analogue. It accounts for part of 

the rapid increase in interaction energy at short-range. Two approaches for deriving the 

exchange repulsion interaction have been developed over the years. One is to regard the 

exchange repulsion as the exchange part of the first-order energy correction in the short-

range intermolecular perturbation theory through a density matrix formalism.4 The other 

LCAO-MO type approach due to Fröman and Löwdin does not rely on perturbation 

theory. The interaction energy is the difference between the expectation value of the total 
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Hamiltonian and the energy of the non-interaction constituting molecules. Jensen and 

Gordon developed a formula for EXR, initially using density matrix formalism.5 The other 

approach leads to the same exchange repulsion formula.6 A fully analytic EFP-EFP 

exchange repulsion gradient was subsequently.7,8 QM-EFP EXR is developed together 

with the exchange repulsion Fock operator VXR.6  QM-EFP EXR and VXR have been 

implemented in GAMESS.9  

 In a previous work, the QM-EFP EXR implementation was limited to one EFP 

fragment. In the present work, extensive code modifications were accomplished to enable 

the use of multiple EFP fragments. The fully analytic QM-EFP EXR gradients are 

presented in Section II. The code modification and testing results are briefly discussed in 

Section III. Section IV describes the implementation of the QM-EFP EXR gradient. 

Section V concludes.  

Theory 

(A) Fock Operator and Energy Expressions 

 The QM-EFP exchange repulsion energy EXR is5, 

E XR = −2 (ij | ij)SGO

j∈B
∑

i∈A
∑

−2 Sij 2 Vij
A + Gij

A( ) + Fjl
BSil

l∈B
∑⎡

⎣⎢
⎤
⎦⎥j∈B

∑
i∈A
∑

+2 Sij Skj Fik
A + Vik

EFP,B −Vik
j( )

k∈A
∑ + Sij

−ZI

RjII∈A

Atom

∑ + 2 Vkk
j

k∈A
∑

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j∈B

∑
i∈A
∑

	   (1) 

In Eq. (1) i and k refer to the MOs of the ab initio molecule A; j and l refer to the MOs of 

EFP fragment B. (ij|ij) is an electron repulsion integral, SGO refers to the spherical 
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Gaussian approximation10. Sij is the QM-EFP overlap integral. Fik
A  and Fjl

B  are the Fock 

matrices of the ab initio and the EFP molecules, respectively. Vij
A 	  is	   the	   one-‐electron	  

nuclear	  attraction	  term	  from	  the	  molecule	  A.	  Vik
j 	  is	  the	  one-‐electron	  potential	  due	  to	  

the	  EFP	  MO	  j.	  The	  attraction	  between	  the	  electrons	  of	  the	  EFP	  fragments	  and	  nuclei	  

of	   the	   ab	   initio	   molecules	   is	   modeled	   classically	   as	   −ZI

RjII∈A

Atom

∑ .	   The	   two-‐electron	  

integrals	  involving	  EFP	  MOs	  is	  defined	  as:Gij
A = 2Jij

A − Kij
A = 2 ij | kk( ) − ik | jk( )⎡⎣ ⎤⎦

k∈A
∑ . 

 The exchange repulsion Fock operator VXR is obtained by taking the variational 

derivative with respect to the ab initio orbitals6,9.  

Vmi
XR = − mj | ij( )SGO

j∈B
∑

−
1
2

Smj 2 Vij
A + Gij

A( ) + Fjl
BSil

l∈B
∑$

%
&

'

(
)

j∈B
∑ −

1
2

Sij 2 Vmj
A + Gmj

A( ) + Fjl
BSml

l∈B
∑$

%
&

'

(
)

j∈B
∑

− Skj 4 kj | mi( ) − km | ji( ) − ki | jm( )$% '(
j∈B
∑

k∈A
∑

+ Smj Skj Fik
A + Vik

EFP,B −Vik
j( )

k∈A
∑ + Sij

−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
*

+
,

-

.
/

$

%
&
&

'

(
)
)j∈B

∑

+ Sij Skj Fmk
A + Vmk

EFP,B −Vmk
j( )

k∈A
∑$
%
&

'

(
)

j∈B
∑ + 2 Skj

2Vmi
j

j∈B
∑

k∈A
∑

+
1
2

SkjSnj 4 nk | im( ) − nm | ik( ) − ni | mk( )$% '(
j∈B
∑

k∈A
∑

n∈A
∑

(2)	  

VXR can be separated into one-electron and two-electron terms, hXR  and GXR , 

respectively, so that E XR = [2hii
XR + Gii

XR

i∈A
∑ ] . The one- and two-electron terms explicitly 

refer to the ab initio orbitals. Now consider the hXR 	  part	  of	  VXR, 
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hmi
XR = − mj | ij( )SGO

j∈B
∑

−
1
2

Smj 2 Vij
A( ) + Fjl

BSil
l∈B
∑⎡

⎣⎢
⎤
⎦⎥j∈B

∑ −
1
2

Sij 2 Vmj
A( ) + Fjl

BSml
l∈B
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⎣⎢
⎤
⎦⎥j∈B

∑

+ Smj Sij
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RjII

A

∑
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⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j∈B

∑

	   (3)	  

So,	  the	  sum	  over	  the	  diagonal	  terms	  gives	  

2hii
XR

i∈A
∑ = −2 ij | ij( )SGO

j∈B
∑

i∈A
∑

−2 ⋅ 1
2

Sij 2Vij
A + Fjl

BSil
l∈B
∑⎡

⎣⎢
⎤
⎦⎥j∈B

∑
i∈A
∑ − 2 ⋅ 1

2
Sij 2Vij

A + Fjl
BSil

l∈B
∑⎡

⎣⎢
⎤
⎦⎥j∈B

∑
i∈A
∑

+2 Sij Sij
−ZI

RjII

A

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j∈B

∑
i∈A
∑

= −2 ij | ij( )SGO

j∈B
∑

i∈A
∑ − 2 Sij 2Vij
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⎣⎢
⎤
⎦⎥j∈B

∑
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∑ + 2 Sij Sij

−ZI
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A
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⎛
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⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j∈B

∑
i∈A
∑

	  

(4)	  

Now,	  consider	  the	  two-‐electron	  part,	  Gmi
XR ,	  of	  VXR:	  

Gmi
XR = −

1
2

Smj 2Gij
A( )

j∈B
∑ −

1
2

Sij 2Gmj
A( )

j∈B
∑ − Skj 4 kj | mi( ) − km | ji( ) − ki | jm( )⎡⎣ ⎤⎦

j∈B
∑

k∈A
∑

+ Smj Skj Fik
A + Vik

EFP,B −Vik
j( )

k∈A
∑⎡
⎣⎢

⎤
⎦⎥j∈B

∑ + Sij Skj Fmk
A + Vmk

EFP,B −Vmk
j( )

k∈A
∑⎡
⎣⎢

⎤
⎦⎥j∈B

∑

+ SmjSij 2 Vkk
j

k

A

∑⎛
⎝⎜

⎞
⎠⎟j∈B

∑ + 2 Skj
2Vmi

j

j∈B
∑

k∈A
∑

+
1
2

SkjSnj 4 nk | im( ) − nm | ik( ) − ni | mk( )⎡⎣ ⎤⎦
j∈B
∑

k∈A
∑

n∈A
∑

(5) 

Summing over the diagonal terms gives:	  
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Gii
XR

i∈A
∑ = −

1
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Sij 2 2 ij | kk( ) − ik | jk( )⎡⎣ ⎤⎦
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	   	   	   	   	   	   	   	   	   (6)	  

	  

	  

 (B) Exchange Repulsion Gradients 

In the derivation below, j and l denote EFP MOs, i, k, m and n denote ab initio MOs. 

Atomic orbitals are denoted by Greek letters. The atoms of the ab initio molecule and the 

EFP fragments are denoted by a and b, respectively.  

Derivatives with respect to ab initio atom centers 

The derivative of Eq. (1) with respect to an ab initio atom center, qa, is 
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∂E XR
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= −2 ∂(ij | ij)SGO
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⎠⎟
+ Fjl

B ∂Sil

∂qa

⎛
⎝⎜

⎞
⎠⎟l
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⎥
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	   	   	   	   	   	   	   	   	   	   	   (7)	  

where qa is the Cartesian coordinate of atom a of the ab initio molecule A. The following 

derivatives are required to evaluate Eq. (7): 

∂(ij | ij)SGO

∂qa

,   
∂Sij

∂qa

,   
∂Vij

A

∂qa

,   
∂Gij

A

∂qa

,   ∂Fik
A

∂qa

,   ∂Vik
EFP,B

∂qa

,   ∂Vik
j

∂qa

,   ∂
∂qa

−ZI

RjII

A

∑  

The	  derivation	  of	  the	  derivative	  of	  the	  overlap	  integral	  is	  shown	  here	  as	  an	  example	  

to	   illustrate	   the	   key	   steps.	   The	   details	   of	   the	   full	   derivation	   can	   be	   found	   in	   the	  

Appendix.	  

∂Sij

∂qa

=
∂
∂qa

CµiCν j µ |ν( )
ν
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∑
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∑
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∑

= Cµi
a µ | j( )

µ

A

∑ + Sij
a

	   	   	   (8)	  
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The last two terms in the second equality of Eq. (8) equal zero because EFP MOs are 

frozen and the EFP AOs are not functions of the ab initio coordinates. Note that Sij
a  is not 

a shorthand notation for ∂Sij ∂qa , rather Sij
a = Cµi µa | j( )

µ

A

∑ . To avoid solving the time-

consuming coupled perturbed Hartree-Fock equations for Ca, Eq. (8) is rewritten in terms 

of orbital response terms 
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∑

	   	   	   	   	   (9)	  

The last step of Eq. (9) uses the fact that Umi
a +Uim

a = −Smi
a 11 

Carrying out the same procedures as above for all the derivative terms, the derivative of 

EXR with respect to the ab initio atom center becomes 



www.manaraa.com

	   103	  
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           (10) 

 

Derivatives with respect to EFP centers 

The derivative with respect to an EFP center, that is, center of mass of an EFP fragment, 

is first expressed as, 
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(11)	  

When an EFP fragment translates, all of its AO centers and MOs translate in the same 

way. Because EFP fragments are rigid the MO coefficients are constant. Hence the 

translational derivatives of MO coefficients are zero. The overall translation of an EFP 

fragment can be decomposed into the individual atomic translation in A.8,12   

The derivative of the overlap integral yields 
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The second term in the first equality vanishes because EFP MOs are frozen and the third 

term disappears because an AO of an ab initio molecule is not a function of the 

coordinates of fragment B. The derivative of the ab initio MO coefficient can be 

rewritten in terms of the orbital response terms:	  
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where Sij
b = i | jb( )  and Smi

b is zero because the AOs of the ab initio molecule do not 

depend on the EFP coordinates. 

The derivative of EXR with respect to the EFP centers becomes: 
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          (14) 

Code Modification and Testing 

The previous implementation of QM-EFP EXR was unable to deal with multiple 

EFP fragments. As an example, water trimer is shown in Table 1. The notation H2O-1-23 

means that the first water molecule in the input file is treated by the RHF method and the 

second and third water molecules are treated as EFP fragments. One can see that when 

two EFP fragments are reversed in the input file, exactly the same EXR are expected but 

distinctly different EXRs are obtained. In addition, the EXRs obtained by choosing 

different water molecules as ab initio are expected to be very close to each other but very 

different results are observed. 

 The basis functions used for EFP fragments are also Gaussian functions, not 

different from the ab initio counterpart and therefore the underlying algorithms for 

computing the various matrix elements between an ab initio molecule and an EFP 



www.manaraa.com

	   106	  

fragment are the same as in the usual ab initio code. However, due to the fragmentation 

nature of EFP, the EFP basis functions are organized differently. As a concrete example, 

the exponents for the Gaussian basis functions for the ab initio system are stored as a 

one-dimensional array, while its EFP counterpart is a two-dimensional array with the 

second dimension being the maximum number of different EFP potentials.  

 Sufficient memory allocation and correct indexing for EFP fragments are the two 

key considerations in the code modification. An EFP-related matrix typically has one 

index related to counting EFP fragments. To store the EFP-related matrices, one can 

choose between generating and storing all fragment matrices at once or a single fragment 

at a time. For example, the overlap matrix between the ab initio molecule and EFP 

fragments, Sij, with i and j being ab initio and EFP MO indices, respectively, can be 

generated and stored once for all the fragments or for one fragment at a time. The key 

difference between the two approaches is the memory requirement. The former approach 

requires a memory allocation of (# MOs of ab initio molecule × # MOs of all EFP 

fragments) whereas the latter only needs (# MOs of ab initio molecule × # MOs of the 

largest EFP fragment). Since the S matrix is only an intermediate quantity for computing 

the VXR and EXR, it is more efficient to use the latter approach. To use the latter approach, 

the computation and utilization of the S matrix must be in the same loop over the EFP 

fragments. There are, however, cases for which one must use the former approach. For 

example, the coefficient matrix that transforms all EFP AOs to MOs, PROVEC, is stored 

in a dictionary file and retrieved once at the beginning of the calculation. It is necessary 

to allocate enough memory for it and also very important to be able to ‘jump’ to the right 

fragment. Figure 1 is a pictorial representation of PROVEC matrix, where MXBF is the 
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maximum number of basis functions/AOs of EFP and NTMO is the total number of MOs 

of all the fragments. The way to ‘jump’ to the right fragment block is illustrated in Figure 

2. The counter JMO is initialized before looping over the EFP fragments and is 

incremented by the number of MOs of the previous fragment at the end of each iteration. 

This way, JMO will be the right number for the next fragment.  

 After extensive code modification (see Appendix) the same water trimer systems 

were redone and the expected results were observed (Table 1): changes in the order in the 

input file do not alter the EXR and very similar EXRs are obtained when different water 

molecules are treated by the ab initio method.  

 Various trimer systems and water clusters H2O( )n
, n = 3-6,16 were tested and 

compared to benchmarking exchange repulsion energies calculated by the reduced 

variational space (RVS) method. The 16-water cluster benchmarking result was 

generated by an all-EFP calculation. All of the structures were optimized with RHF/6-

31+G(d,p). The EFP potentials were generated with the 6-311++G(3df,2p) basis set. Each 

molecule in the clusters was in turn treated as an ab initio region with the RHF/6-

311++G(3df,2p) basis set. For example, a 3-water cluster has three combinations: H2O-1-

23, H2O-2-13 and H2O-3-12. The maximum and minimum errors compared to the RVS 

EXR are reported in Table 2. Note that the EXR of the system is the sum of all the pair-

wise QM-EFP and EFP-EFP EXR. For small clusters (trimer, tetramer and pentamer), 

even the largest errors are within ~ 4.0 kcal/mol. The medium-sized water clusters 

showed larger values for the maximum errors but the minimum errors remain comparable 

with the small clusters. The different approximations used for deriving QM-EFP and 
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EFP-EFP exchange repulsion lead to different expressions and consequently different 

EXR. 

Implementation of Gradient 

The general outline of the QM-EFP exchange repulsion gradient code is to have 

one driver subroutine (QMEFGXRDR) to allocate the dynamic memory for relevant 

quantities and to call a subroutine called QMEFGXR that calculates the gradient 

contributions. All of the quantities required for the gradient are computed in QMEFGXR 

by calling various subroutines and all of the terms are then assembled according to Eqs 

(10) and (14). 

For the quantities for which both indices are for the ab initio region, the derivative 

codes are available. Only a small modification is done to make the relevant derivative 

matrices available in QMEFGXR subroutine. For the quantities that involve EFP indices, 

new subroutines were written.    

Conclusion and Future work 

 The QM-EFP exchange repulsion Fock operator and energy codes were 

extensively modified. The current implementation allows multiple EFP fragments. For 

hetero-dimer systems, a modified Fock operator generates much improved exchange 

repulsion energies. The results from the QM-EFP exchange repulsion and RVS 

calculations are in good agreement, with minimal errors typically less than 5 kcal/mol. 

The derivatives of QM-EFP exchange repulsion energy with respect to ab initio atom 

centers and with respect to EFP centers have been implemented. Testing is in progress. 
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Figure 1. A pictorial representation of PROVEC matrix. Each block represents one EFP 

fragment. 

 

 

Figure 2. An illustration of the key steps in the code to ‘jump’ to the correct EFP index.  
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Table 1 The QM-EFP EXR (in Hartree) of water trimer calculated before and after code 

modification. H2O-1-23 means that the 1st water is treated ab initio and the 2nd and 3rd 

water molecules are EFP fragments in that order in the input file.  

Water trimer QM-EFP EXR 
(before) 

QM-EFP EXR 

(after) 
H2O-1-23 0.237570729 0.018545921 
H2O-1-32 0.023720728 0.018545921 
H2O-2-13 0.060030457 0.020656253 
H2O-2-31 0.052989663 0.020656253 
H2O-3-12 0.103773878 0.018469143 
H2O-3-21 1.120385809 0.018469143 
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Table 2. Exchange repulsion energies (kcal/mol) obtained from benchmark calculations 

and smallest and largest errors for QM-EFP calculations. The second and the third 

columns show the smallest and the largest deviations from the RVS interaction energies 

when different molecules are treated ab initio. For all systems except (H2O)16, the 

benchmark results were obtained from the RVS analysis. The (H2O)16 benchmark value is 

obtained from an all-EFP2 calculation. All of the cluster structures were optimized with 

RHF/6-31+G(d,p) and the EFP potentials were generated with the 6-311++G(3df,2p) 

basis set. 

Exchange Repulsion 
(kcal/mol) 

Benchmark QM-EFP error 
(min) 

QM-EFP error 
(max) 

(H2O)3 15.0 1.6 2.0 
(MeOH)3 13.5 0.0 2.7 

((CH3)2CO)3 5.6 -1.2 -1.4 
(CH3CN)3 5.1 -0.8 -1.2 
(CH2Cl2)3 1.1 -0.1 1.3 
3DMSO 10.1 -2.0 Not converged 
(H2O)4 29.3 -0.9 -1.9 
(H2O)5 39.1 2.4 3.8 

(H2O)6-bag 42.5 1.1 -7.2 
(H2O)6-boat 43.3 -2.4 -6.8 
(H2O)6-book 43.8 0.0 -4.0 
(H2O)6-cage 40.9 0.8 -2.3 

(H2O)6-cyclic 45.0 -3.2 -8.8 
(H2O)6-prism 39.8 0.3 1.5 

(H2O)16 118.3 0.3 5.2 
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Appendix 

(A) Derivation of gradients of QM-EFP EXR 

The QM-EFP exchange repulsion energy expression is 

E XR = −2 (ij | ij)SGO
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The derivative of Eq. (A1) with respect to an ab initio atom center, qa, is 

∂E XR

∂qa

= −2 ∂(ij | ij)SGO

∂qaj

B

∑
i

A

∑

−2
∂Sij

∂qa

⎛
⎝⎜

⎞
⎠⎟

2 Vij
A + Gij

A( ) + Fjl
BSil

l

B

∑⎡
⎣⎢

⎤
⎦⎥j

B

∑
i

A

∑ − 2 Sij
j

B

∑
i

A

∑ 2
∂Vij

A

∂qa

+
∂Gij

A

∂qa

⎛

⎝⎜
⎞

⎠⎟
+ Fjl

B ∂Sil

∂qa

⎛
⎝⎜

⎞
⎠⎟l

B

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+2
∂Sij

∂qa

⎛
⎝⎜

⎞
⎠⎟

Skj Fik
A + Vik

EFP,B −Vik
j( )

k

A

∑ + Sij
−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j

B

∑
i

A

∑

+2 Sij

∂Skj

∂qa

⎛
⎝⎜

⎞
⎠⎟

Fik
A + Vik

EFP,B −Vik
j( )

k

A

∑ +
∂Sij

∂qa

⎛
⎝⎜

⎞
⎠⎟

−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟

+ Skj
∂Fik

A

∂qa

+
∂Vik

EFP,B

∂qa

−
∂Vik

j

∂qa

⎛
⎝⎜

⎞
⎠⎟k

A

∑ + Sij
∂
∂qa

−ZI

RjII

A

∑ + 2 ∂Vkk
j

∂qak

A

∑
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

j

B

∑
i

A

∑

 

           (A2) 

where qa is the Cartesian coordinate of atom a of the ab initio molecule A. The following 

derivatives are required to evaluate Eq. (A2): 
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The derivative of –ZI/RjI is trivial, use the x-coordinate of qa as an example 

∂
∂xa

−ZI

RjII

A

∑ = −Za

∂Rja
−1

∂xa

= −Za( )
∂ x j − xa( )2

+ yj − ya( )2
+ z j − za( )2⎡

⎣
⎤
⎦
−1/2

∂xa

= −Za( ) −
1
2

⎛
⎝⎜

⎞
⎠⎟

x j − xa( )2
+ yj − ya( )2

+ z j − za( )2⎡
⎣

⎤
⎦
−3/2

2 x j − xa( ) −1( )

=
−Za( ) x j − xa( )

Rja
3

  (A3) 

Where I is the nucleus of the molecule A and only the terms with I=a survive.  
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The last two terms in the second equality are equal to zero because EFP MOs are frozen 

and the EFP AOs are not a function of the ab initio coordinates. Note that Sij
a  is not a 

shorthand notation for ∂Sij ∂qa , rather Sij
a = Cµi µa | j( )

µ

A

∑ . To avoid solving the time-

consuming coupled perturbed Hartree-Fock equations for Ca, Eq. (A4) is rewritten in 

terms of orbital response terms 
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The last step of Eq. (A5) uses the fact that Umi
a +Uim

a = −Smi
a 11 

 The derivative of the nuclear-electron attraction term, 
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, involves the 

derivative of the ab initio MO and the derivative of the operator. 

∂Vij
A

∂qaj

B

∑
i

A

∑ =
∂
∂qa

CµiCν j µ V A ν
ν

B

∑
µ

A

∑
j

B

∑
i

A

∑

= Cµi
a Cν j µ V A ν + CµiCν j µa V A ν + CµiCν j µ V Aa

ν
ν

B

∑
µ

A

∑
j

B

∑
i

A

∑

= −
1
2

Smi
a Vmj

A

j

B

∑
i,m

A

∑ + ia V A j + i V Aa

j( )
j

B

∑
i

A

∑

= −
1
2

Smi
a Vmj

A

j

B

∑
i,m

A

∑ + Vij
Aa

j

B

∑
i

A

∑

 (A6) 

where Vij
Aa

= ia V A j + i V Aa

j  

 The derivative of the two-electron matrix element involving an EFP MO looks 

like 
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∂Gij
A

∂qaj

B

∑
i

A

∑ =
∂
∂qa

2 ij | kk( ) − ik | jk( )⎡⎣ ⎤⎦
k

A

∑
j

B

∑
i

A

∑

=
∂
∂qa

CµiCνkCλk 2 µ j |νλ( ) − 1
2

µν | jλ( ) − 1
2

µλ |ν j( )⎡
⎣⎢

⎤
⎦⎥µνλ

A

∑
k

A

∑
j

B

∑
i

A

∑

=

Cµi
a CνkCλk 2 µ j |νλ( ) − 1

2
µν | jλ( ) − 1

2
µλ |ν j( )⎡

⎣⎢
⎤
⎦⎥

+CµiCνk
a Cλk 2 µ j |νλ( ) − 1

2
µν | jλ( ) − 1

2
µλ |ν j( )⎡

⎣⎢
⎤
⎦⎥

+CµiCνkCλk
a 2 µ j |νλ( ) − 1

2
µν | jλ( ) − 1

2
µλ |ν j( )⎡

⎣⎢
⎤
⎦⎥

+CµiCνkCλk

2 µa j |νλ( ) + 2 µ j |ν aλ( ) + 2 µ j |νλa( )
−

1
2

µaν | jλ( ) − 1
2

µν a | jλ( ) − 1
2

µν | jλa( )
−

1
2

µaλ |ν j( ) − 1
2

µλ |ν a j( ) − 1
2

µλa |ν j( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

µνλ

A

∑
k

A

∑
j

B

∑
i

A

∑

=

Umi
a 2 mj | kk( ) − 1

2
mk | jk( ) − 1

2
mk | kj( )⎡

⎣⎢
⎤
⎦⎥m

A

∑

+ Umk
a

m

A

∑ 2 ij | mk( ) − 1
2

im | jk( ) − 1
2

ik | mj( )⎡
⎣⎢

⎤
⎦⎥

+ Umk
a 2 ij | km( ) − 1

2
ik | jm( ) − 1

2
im | kj( )⎡

⎣⎢
⎤
⎦⎥m

A

∑

+

2 ia j | kk( ) + 2 ij | kak( ) + 2 ij | kka( )
−

1
2

iak | jk( ) − 1
2

ika | jk( ) − 1
2

ik | jka( )
−

1
2

iak | kj( ) − 1
2

ik | ka j( ) − 1
2

ika | kj( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

k

A

∑
j

B

∑
i

A

∑

= −
1
2

Smi
a 2 mj | kk( ) − mk | jk( )⎡⎣ ⎤⎦

i,k ,m

A

∑
j

B

∑

+ −
1
2

Smk
a

i,k ,m

A

∑ 4 ij | mk( ) − im | jk( ) − ik | mj( )⎡⎣ ⎤⎦
j

B

∑

+ 2 ia j | kk( ) − iak | jk( ) + 4 ij | kak( ) − ika | jk( ) − ik | jka( )⎡⎣ ⎤⎦
k

A

∑
j

B

∑
i

A

∑

= −
1
2

Smi
a Gmj

A

i,m

A

∑
j

B

∑ −
1
2

Smk
a

i,k ,m

A

∑ 4 ij | mk( ) − im | jk( ) − ik | mj( )⎡⎣ ⎤⎦
j

B

∑ + Gij
Aa

j

B

∑
i

A

∑

(A7) 
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Where Gij
Aa

j

B

∑
i

A

∑ = 2 ia j | kk( ) − iak | jk( ) + 4 ij | kak( ) − ika | jk( ) − ik | jka( )⎡⎣ ⎤⎦
k

A

∑
j

B

∑
i

A

∑  

The derivative of the Fock matrix of molecule A can be broken down to one- and 

two-electron contributions.  

∂Fik
A

∂qa

=
i,k

A

∑ ∂hik

∂qa

+
∂Gik

A

∂qa

⎛
⎝⎜

⎞
⎠⎟i,k

A

∑         (A8) 

∂hik

∂qai,k

A

∑ =
∂
∂qa

CµiCνkhµν
µ ,ν

A

∑
i,k

A

∑

= Cµi
a Cνkhµν + CµiCνk

a hµν + CµiCνkhµν
a

µ ,ν

A

∑
i,k

A

∑

= CµmUmi
a Cνkhµν + CµiCνmUmk

a hµν( )
m

A

∑
µ ,ν

A

∑
i,k

A

∑ + hik
a

i,k

A

∑

= −
1
2

Smi
a hmk −

i,k ,m

A

∑ 1
2

Smk
a hmi + hik

a

i,k

A

∑

= −Smi
a hmk

i,k ,m

A

∑ + hik
a

i,k

A

∑

    (A9) 

Both i and k run over the occupied orbitals of the ab initio molecule and the first two 

terms in the second last equality are equivalent.  
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∂Gik
A

∂qai,k

A

∑

=
∂
∂qa

CµiCνkCλnCσn
µνλσ

A

∑ 2 µν | λσ( ) − 1
2

µλ |νσ( ) − 1
2

µσ |νλ( )⎡
⎣⎢

⎤
⎦⎥i,k ,n

A

∑

=
Cµi

a CνkCλnCσn + CµiCνk
a CλnCσn

+CµiCνkCλn
a Cσn + CµiCνkCλnCσn

a

⎛

⎝
⎜

⎞

⎠
⎟

µνλσ

A

∑ 2 µν | λσ( ) − 1
2

µλ |νσ( ) − 1
2

µσ |νλ( )⎡
⎣⎢

⎤
⎦⎥i,k ,n

A

∑

+ CµiCνkCλnCσn
µνλσ

A

∑

2 µaν | λσ( ) − 1
2

µaλ |νσ( ) − 1
2

µaσ |νλ( )
+2 µν a | λσ( ) − 1

2
µλ |ν aσ( ) − 1

2
µσ |ν aλ( )

+2 µν | λaσ( ) − 1
2

µλa |νσ( ) − 1
2

µσ |νλa( )
+2 µν | λσ a( ) − 1

2
µλ |νσ a( ) − 1

2
µσ a |νλ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

i,k ,n

A

∑

= Umi
a 2 mk | nn( ) − 1

2
mn | kn( ) − 1

2
mn | kn( )⎡

⎣⎢
⎤
⎦⎥m

A

∑
i,k ,n

A

∑

+ Umk
a 2 im | nn( ) − 1

2
in | mn( ) − 1

2
in | mn( )⎡

⎣⎢
⎤
⎦⎥m

A

∑
i,k ,n

A

∑

+ Umn
a 2 ik | mn( ) − 1

2
im | kn( ) − 1

2
in | km( )⎡

⎣⎢
⎤
⎦⎥m

A

∑
i,k ,n

A

∑

+ Umn
a 2 ik | nm( ) − 1

2
in | km( ) − 1

2
im | kn( )⎡

⎣⎢
⎤
⎦⎥m

A

∑
i,k ,n

A

∑

+
2 iak | nn( ) − ian | kn( ) + 2 ika | nn( ) − in | kan( )
+4 ik | nan( ) − ina | kn( ) − in | kna( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i,k , f

A

∑

= Umi
a 2 mk | nn( ) − mn | kn( )⎡⎣ ⎤⎦ +Umk

a 2 im | nn( ) − in | mn( )⎡⎣ ⎤⎦⎡⎣ ⎤⎦
m

A

∑
i,k ,n

A

∑

+ Umn
a 4 ik | mn( ) − im | kn( ) − in | km( )⎡⎣ ⎤⎦

m

A

∑
i,k ,n

A

∑

+
2 iak | nn( ) − ian | kn( ) + 2 ika | nn( ) − in | kan( )
+4 ik | nan( ) − ina | kn( ) − in | kna( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i,k ,n

A

∑

= −
1
2

Smi
a Gmk

A −
1
2

Smk
a Gmi

A −
1
2

Smn
a 4 ik | mn( ) − im | kn( ) − in | km( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭i,k ,m,n

A

∑ + Gik
Aa

i,k

A

∑

= − Smi
a Gmk

A

i,k ,m

A

∑ −
1
2

Smn
a 4 ik | mn( ) − im | kn( ) − in | km( )⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥i,k ,m,n

A

∑ + Gik
Aa

i,k

A

∑

(A10) 
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where Gik
Aa

i,k

A

∑ =
2 iak | nn( ) − ian | kn( ) + 2 ika | nn( ) − in | kan( )
+4 ik | nan( ) − ina | kn( ) − in | kna( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i,k ,n

A

∑  

Now combine Eq. (A9) and (A10) 

∂Fik
A

∂qai,k

A

∑ = −Smi
a hmk

i,k ,m

A

∑ + hik
a

i,k

A

∑ − Smi
a Gmk

A

i,k ,m

A

∑ −
1
2

Smn
a 4 ik | mn( ) − im | kn( ) − in | km( )⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥i,k ,m,n

A

∑ + Gik
Aa

i,k

A

∑

= −Smi
a Fmk

A

i,k ,m

A

∑ + Fik
Aa

i,k

A

∑ −
1
2

Smn
a 4 ik | mn( ) − im | kn( ) − in | km( )⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥i,k ,m,n

A

∑
 

          (A11) 

The operators of both ∂Vik
EFP,B

∂qa

and ∂Vik
j

∂qa

are functions of EFP fragment B hence the 

derivatives come from the contributions of derivatives of MOs. These two terms are 

derived similarly. Here only the derivation for ∂Vik
EFP,B

∂qa

is given.  

∂Vik
EFP,B

∂qai,k

A

∑ =
∂
∂qa

CµiCνk µ |V EFP,B |ν( )
µ ,ν

A

∑
i,k

A

∑

= Cµi
a Cνk µ |V EFP,B |ν( ) + CµiCνk

a µ |V EFP,B |ν( )⎡⎣ ⎤⎦
µ ,ν

A

∑
i,k

A

∑

+ CµiCνk µa |V EFP,B |ν( ) + CµiCνk µ |V EFP,B |ν a( )⎡⎣ ⎤⎦
µ ,ν

A

∑
i,k

A

∑

= Umi
a Vmk

EFP,B +Umk
a Vim

EFP,B( )
i,k ,m

A

∑ + ia |V EFP,B | k( ) + i |V EFP,B | ka( )
i,k

A

∑

= −
1
2

Smi
a Vmk

EFP,B + Smk
a Vim

EFP,B( )
i,k ,m

A

∑ + Vik
EFP,Ba

i,k

A

∑

= − Smi
a Vmk

EFP,B

i,k ,m

A

∑ + Vik
EFP,Ba

i,k

A

∑

 (A12) 

And similarly, 

∂Vik
j

∂qai,k

A

∑ = − Smi
a Vmk

j

i,k ,m

A

∑ + Vik
ja

i,k

A

∑        (A13) 
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Now substitute Eqs. (A3), (A5-7) and (A11-13) back into Eq. (A2) and look at them term 

by term, 

−2
∂Sij

∂qa

⎛
⎝⎜

⎞
⎠⎟

2 Vij
A + Gij

A( ) + Fjl
BSil

l

B

∑⎡
⎣⎢

⎤
⎦⎥j

B

∑
i

A

∑

= −2 −
1
2

Smi
a Smj + Sij

a⎛
⎝⎜

⎞
⎠⎟m

A

∑ 2 Vij
A + Gij

A( ) + Fjl
BSil

l

B

∑⎡
⎣⎢

⎤
⎦⎥j

B

∑
i

A

∑

= Smi
a Smj 2Vij

A + 2Gij
A( )

j

B

∑
i,m

A

∑ + Smi
a SmjFjl

BSil
j ,l

B

∑
i,m

A

∑

−2 Sij
a 2Vij

A + 2Gij
A( )

j

B

∑
i

A

∑ − 2 Sij
aFjl

BSil
j ,l

B

∑
i

A

∑

     (A14) 

 

−2 Sij
j

B

∑
i

A

∑ 2
∂Vij

A

∂qa

+
∂Gij

A

∂qa

⎛

⎝⎜
⎞

⎠⎟
+ Fjl

B ∂Sil

∂qa

⎛
⎝⎜

⎞
⎠⎟l

B

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −2 Sij
j

B

∑
i

A

∑
2

−
1
2

Smi
a Vmj

A + Vij
Aa⎛

⎝⎜
⎞
⎠⎟m

A

∑⎛⎝⎜
⎞
⎠⎟

+

−
1
2

Smi
a Gmj

A

m

A

∑ −
1
2

Smk
a

k ,m

A

∑ 4 ij | mk( ) − im | jk( ) − ik | mj( )⎡⎣ ⎤⎦ + Gij
Aa⎛

⎝⎜
⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ Fjl
B −

1
2

Smi
a Sml + Sil

a⎛
⎝⎜

⎞
⎠⎟m

A

∑
l

B

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
2SijSmi

a

m

A

∑ Vmj
A + Gmj

A( ) − 2Sij 2Vij
Aa

+ 2Gij
Aa( )

+2 SijSmk
a

k ,m

A

∑ 4 ij | mk( ) − im | jk( ) − ik | mj( )⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ Sij Fjl
BSmi

a Sml − 2Fjl
BSil

a( )
m

A

∑
l

B

∑
⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

j

B

∑
i

A

∑

= SijSmi
a 2Vmj

A + 2Gmj
A( )

j

B

∑
i,m

A

∑ + SijSmi
a SmlFjl

B

j ,l

B

∑
i,m

A

∑

− 2Sij 2Vij
Aa

+ 2Gij
Aa( ) −

j

B

∑
i

A

∑ 2SijSil
aFjl

B

j ,l

B

∑
i

A

∑

+2 SijSmk
a 4 ij | mk( ) − im | jk( ) − ik | mj( )⎡⎣ ⎤⎦

j

B

∑
i,k ,m

A

∑
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           (A15) 

2
∂Sij

∂qa

Skj Fik
A + Vik

EFP,B −Vik
j( )

k

A

∑ + Sij
−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j

B

∑
i

A

∑

= 2 −
1
2

Smi
a Smj + Sij

a⎛
⎝⎜

⎞
⎠⎟m

A

∑ Skj Fik
A + Vik

EFP,B −Vik
j( )

k

A

∑ + Sij
−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j

B

∑
i

A

∑

= − Smi
a SmjSkj Fik

A + Vik
EFP,B −Vik

j( )
j

B

∑
i,k ,m

A

∑ − Smi
a SmjSij

−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟j

B

∑
i,m

A

∑

+2 Sij
aSkj Fik

A + Vik
EFP,B −Vik

j( )
j

B

∑
i,k

A

∑ + 2 Sij
aSij

−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟j

B

∑
i

A

∑

 (A16) 

 

2 Sij

∂Skj

∂qa

Fik
A + Vik

EFP,B −Vik
j( )

k

A

∑ +
∂Sij

∂qa

−ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j

B

∑
i

A

∑

= 2 Sij

−
1
2

Smk
a Smj + Skj

a⎛
⎝⎜

⎞
⎠⎟m

A

∑ Fik
A + Vik

EFP,B −Vik
j( )

k

A

∑

+ −
1
2

Smi
a Smj + Sij

a⎛
⎝⎜

⎞
⎠⎟m

A

∑ −ZI

RjII

A

∑ + 2 Vkk
j

k

A

∑
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

j

B

∑
i

A

∑

= − SijSmk
a Smj Fik

A + Vik
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  (A17) 
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∑
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           (A18) 

Now adding up Eqs. (A14-18) 
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∑
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           (A19) 

Rearrange the terms and combine the terms of the same color that are equivalent or 

identical.  
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∑
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∑
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∑
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∑
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⎢
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           (A20) 

Now, ∂(ij | ij)SGO

∂qa

is dealt with. 
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−2
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⎢
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(A21) 

In the last equality of Eq. (A21), the first two terms just involve the derivative of the MO 

coefficients and can be easily obtained using the response coefficient matrix U. 
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  (A22) 

And similarly 
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  (A23) 
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Since m and i both run over the occupied orbitals of the ab initio molecule A, and µ and ν 

both run over the AO basis of molecule A. Eqs (A22) and (A23) are equivalent and can 

be combined. 

The last term of Eq. (A21) is much more involved algebraically with repeated use 

of the chain rule and product rule. 
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⎢
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 (A24) 

Now, 
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           (A25) 

The expression in blue will be used later. 

Recall that αµ j = −
2

Rµ j
2 ln Sµ j , both R and S have functional dependence on the 

coordinates of nuclear a of the ab initio molecule A. 
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∂
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Rµ j
2

= −
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2
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⎣
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4

  (A26) 

Take qa=xa for concreteness, 
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where the delta function equals 1 if the basis function µ is centered at atom a in the 

molecule A and equals 0 otherwise. Eq. (A27) can then be substituted back into Eq. 

(A25). 

The F0 function is defined as13 

F0 t( ) = t −1/2 e− y2
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∫         (A28) 

It is related to the error function by13  
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Now let t =
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   (A32) 

∂
∂qa
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⎛

⎝⎜
⎞

⎠⎟
 has been derived in Eq. (25) (shown in blue). 
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∂
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xµ − xν( )2
+ yµ − yν( )2

+ zµ − zν( )2⎡
⎣

⎤
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= 2 xµ − xν( )δac

     (A33) 

where δac =1 if the atom c, where the basis function µ resides, coincides with the atom a. 

All the terms that are needed for evaluating Eq. (24) are derived.  

(B) Analytic QM-EFP exchange repulsion gradient with respect to EFP centers 

The derivative with respect to an EFP center, that is, the center of mass of an EFP 

fragment. 
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(A34) 

Forces 

 When an EFP fragment translates, all of its AO centers and MOs translate in the 

same way. Because EFP fragments are rigid the MO coefficients are constant. Hence the 

translational derivatives of MO coefficients are zero. The overall translation of an EFP 

fragment can be decomposed into the individual atomic translations in A.8,12  

The derivative of the overlap integral yields 

∂Sij

∂qB

= Cµi
b Cν jSµν + CµiCν j

b Sµν + CµiCν j µb |ν( )
b

B

∑
ν

B

∑
µ

A

∑ + CµiCν j µ |ν b( )

= Cµi
b Cν jSµν

b

B

∑
ν

B

∑
µ

A

∑ + CµiCν j µ |ν b( )
  (A35) 

where b stands for the atoms of fragment B. The second term in the first equality 

vanishes because EFP MOs are frozen, and the third term disappears because the AO of 

ab initio molecule is not a function of coordinates of fragment B. The derivative of the ab 

initio MO coefficient can be rewritten in terms of the orbital response terms: 
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∑   (A36) 

where Sij
b = i | jb( )  and Smi

b equals to zero because AOs of the ab initio molecule do not 

depend on EFP coordinates. 

The operator of Vij
A is the potential due to the ab initio molecule hence do not 

contribute to the derivative with respect to EFP coordinates, 

∂Vij
A

∂qB

= i |V A | jb( )
b

B

∑ = Vij
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b
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∑        (A37) 

And 

∂Gij
A
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= 2 ijb | kk( ) − (ik | jbk)⎡⎣ ⎤⎦
k

A

∑
b

B

∑ = Gij
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b
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∑      (A38) 

When the EFP fragment B translates or rotates about its center of mass, the Fock matrix 

Fjl
B is not changing. 

∂Fjl
B

∂qB

=
∂Fjl

B

∂qbb

B

∑ = 0          (A39) 

The Fock matrix of ab initio molecule A has no dependence on B. Hence 

∂Fik
A

∂qB

=
∂Fik

A

∂qbb

B

∑ = 0          (A40) 

RjI is the distance between EFP jth LMO centroid and Ith nuclear coordinate of molecule 

A. Since an EFP fragment is rigid, the translational movements of the centroids and the 

center of mass are the same, i.e. ∂qj ∂qB = 1 . Use the x-coordinate as a concrete 

example, 
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 (A41) 

Similarly the operator V j = −1 / rj has implicit dependence on the center of mass of the 

EFP fragment.  
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= i ∂V j
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k = −
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k      (A42) 

For operator V EFP,B , which is the electrostatic potential expressed as a multipole 

expansion, there is a functional dependence on the nuclear coordinates of B.  

∂Vik
EFP,B

∂qB

= i ∂V EFP,B

∂qB

k = i ∂V EFP,B

∂qb

k
b∈B
∑       (A43) 

Now substituting various terms back into Eq. (A34) yields 
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(A44) 

where the terms of the same color are equivalent and combined.  
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(A45) 

Firstly, 
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           (A46) 
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To evaluate Eq. (A46) the derivative of α needs to be calculated. 
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  (A47) 

Take qB=xB, the x-coordinate of the center of mass of EFP fragment B for concreteness, 
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Note that 
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= 1 because EFP fragments are rigid. Next, 
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∂Rµν
2

∂xB

= 0  since Rµν is only a function of the nuclear coordinates of the ab initio molecule. 

So 
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(B)	  Code	  Modification	  of	  QM-‐EFP	  exchange	  repulsion	  interaction	  

Two-‐electron	  integrals	  

Currently, the computation of two-electron integrals (TEI) involved in QM-EFP 

exchange repulsion is done conventionally, i.e. stored on disk and retrieved later when 

needed. The storage of TEI is accomplished by two subroutines: QOUTEFP and 

FINAL_EFP. The TEI are sequentially stored onto the records (storage unit), each of 

which holds NINTMX integrals. This is handled by the subroutine QOUTEFP. For each 

fragment, the last record may be only partially filled and is handled by the subroutine 
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FINAL_EFP. In the current implementation, after filling the partial record, the record 

index NREC and the integral index ICOUNT is reset by the subroutine FINAL_EFP so 

that the QM-EFP TEI of the next fragment will be stored at the beginning of a new 

record. (Fig A1) The previous implementation did not separate the storage of TEI of 

different fragments by resetting the counters, which caused confusion when retrieving 

those TEI.    

 Besides the exchange integral (mj|ij) or (ij|ij) that are approximated by SGO 

approximations, two types of TEIs appear in the QM-EFP exchange repulsion Fock 

operator. Type I has all four MOs belonging to the ab initio molecule A, e.g. (nk|im); 

type II has one EFP MO and three ab initio MOs, e.g. (kj|mi) with j being the EFP MO. 

 Compare the usual ab initio 2-electron integrals with type I term. Denote capital 

letters for AO indices and small letters for MO indices. 

ab initio 2-electron integrals in AO basis: 

GIJ = DKL IJ | KL( ) − 1
4
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4
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Type I term: 
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One can see that the term in the curly parentheses resembles the ab initio 2-electron 

integrals with a density-like S2’ matrix. Thus the code can be simply modified by taking 

the conventional code and replacing the density matrix with the S2’ matrix. It is important 

to realize that although both indices of the S2’ matrix (I and J) is on molecule A, it is 

derived from a product of two overlap matrices by summing over the index j, which 

counts MOs on the EFP fragment. Therefore the S2’ matrix is different for different 

fragments. The type I term is then obtained by the appropriate transformation and 

multiplied by a factor two.  

Type II terms: 
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In Eq. (55), the term in the curly parentheses is essentially the same as in the ab initio 

case except that J is an AO on the EFP fragments. 
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In Eq. (56) the transformed overlap matrix acts as the density matrix. The TEI involving 

one EFP index only has permutation symmetry between two ab initio indices in the ket, 

i.e. (IJ|KL)=(IJ|LK). This permutation symmetry was not taken advantage of in the 

previous implementation. The new implementation makes use of the permutation 

symmetry to give a more efficient and cleaner code. It should be mentioned that in the 

above equation, SIJ
' is not simply the overlap matrix between AOs. Rather, it is the matrix 

transformed from the MO overlap matrix. To see this more clearly, 

Sik = ϕ i ϕk = δ ik = χµCµi
µ

AO

∑ χνCνk
ν

AO

∑ , i.e. SMO = C†SAOC = I   

Therefore C†( )−1
= SAOC  and C−1 = C†SAO . Hence the AO overlap matrix can be back-

transformed from the MO overlap matrix by SAO = C†( )−1
SMOC−1 = SAOC( )SMO C†SAO( ) . 

By comparison, the transformed S’ matrix is simply S ',AO = C†SMOC . 

 

Schwarz inequality screening 

 The computation and processing of TEI are time-consuming. Besides taking 

advantage of the permutation symmetry, using Schwarz inequality to skip the 

computation of TEI that contribute little to the final energy saves time, especially for the 

conventional approach where I/O may add significant time cost. The Schwarz inequality 

implies that a TEI such as (ij|kl) obeys the following relationship:  

ij | kl( ) ≤ Kij( )1/2
Kkl( )1/2 where Kij = ij | ij( )  and Kkl = kl | kl( ) . In the context of QM-EFP 

TEI, j is EFP AO index and the other three indices are the ab initio AO indices. The 

exchange integrals involving EFP are computed using the SGO approximation. Both the 
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EFP and ab initio basis functions are ordered in shells and consequently the integrals are 

arranged in shell blocks. The largest exchange integral in each block is picked out and the 

quantity Kij( )1/2
Kkl( )1/2 is formed and compared to a threshold value. If Kij( )1/2

Kkl( )1/2 is 

smaller than this threshold value the corresponding block of TEI (ij|kl) can be skipped. 

The time saving due to the Schwarz inequality screening is demonstrated in Fig. A2. Fig. 

A2 plots the total CPU time saving, which is the difference in total CPU time with and 

without Schwarz inequality screening, as a function of the number of EFP fragments for 

acetone clusters and dichloromethane clusters. The cluster sizes range from 2 up to 5 

molecules, one of which is treated as ab initio molecule. The time saving grows linearly 

as the number of EFP fragments increases. The exchange repulsion energies with and 

without screening are the same.  

 

 

Figure A1. a pictorial representation of the storage of QM-EFP two-electron integrals.  
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Figure A2 the total CPU time saving for acetone and dichloromethane clusters ranging 

from 2 to 5 molecules.  
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CHAPTER 5 RENORMALIZED COUPLED CLUSTER 

APPROACHES IN THE CLUSTER-IN-MOLECULE FRAMEWORK: 

PREDICTING VERTICAL ELECTRON BINDING ENERGIES OF 

THE ANIONIC WATER CLUSTERS H2O( )n

−  
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Peng Xu and Mark S. Gordon 

 

Abstract 

Anionic water clusters are generally considered to be extremely challenging to 

model using fragmentation approaches due to the diffuse nature of the excess electron 

distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule 

(CIM) approach combined with the completely renormalized CR-CC(2,3) method 

(abbreviated CIM/CR-CC(2,3)) is shown to be a viable alternative for computing the 

vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold 

parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, 

demonstrates the reliability of predicting the VEBE, with an average percentage error of 

~ 15%. The errors are predominantly from the electron correlation energy. The CIM/CR-

CC(2,3) approach provides the ease of a black-box type calculation with few threshold 

parameters to manipulate. The cluster sizes that can be studied by high-level ab initio 

methods are significantly increased in comparison with full CC calculations. 
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Introduction 

 The hydrated electron, the simplest reducing agent, still captures intense interest 

in the scientific community, even after its first experimental detection half a century ago.1 

The hydrated electron plays a key role as an important intermediate in many physical, 

chemical and biological processes such as in radiation chemistry and atmospheric 

chemistry.2 Despite persistent efforts to understand this seemingly simple species, the 

very nature of the hydrated electron is still under debate. This is partly because of the 

ubiquitous presence of the hydrated electron in diverse environments, in particular, in 

bulk ( eaq
− ) and in finite-sized water clusters [ H2O( )n

−
]. Finite-sized anionic water clusters, 

especially small water clusters (n=2-6), provide an appealing starting point for 

understanding the hydrated electron because one can study them with sophisticated 

electronic structure theory methods. Experiments under well-controlled conditions can 

also be carried out for small anionic water clusters.3–9 However, the binding 

characteristics of the excess electron in bulk and in smaller water clusters are generally 

different.10 The smaller water clusters tend to bind the excess electron weakly, and often 

the excess electron density exceeds the size of the cluster. As the cluster size gets larger, 

the binding becomes stronger and is expected to converge to the bulk behavior.  

Theoretical studies play an important role in unveiling both a dynamic and a 

microscopically revealing picture of the hydrated electron, especially with regard to the 

transition from finite-size water clusters to the bulk. Two approaches have primarily been 

used to study the hydrated electron, static and statistical. The statistical approach employs 

Monte Carlo (MC) or molecular dynamics (MD) simulation techniques to study the 

statistically averaged properties. A recent review by Turi and Rossky11 presents a nice 
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discussion of statistical methods. The inherent quantum nature of the excess electron 

means that at least this excess electron must be treated with quantum mechanics. The 

static approach focuses primarily on minima on the hydrated electron potential energy 

surface (PES) with methods of varying complexity; for example, treating only one 

electron quantum mechanically, such as the quantum Drude model developed by Jordan 

and coworkers12–14 or a many-electron treatment using correlated ab initio methods. 

Density functional theory (DFT) is also a popular approach although its success depends 

heavily on the choice of the functional. Considering the rapidly increasing complexity of 

the H2O( )n

−
 PES with increasing n, it is not clear that one functional will work equally 

well for all sizes and motifs of H2O( )n

−
. The present work focuses on the static approach. 

It has been recognized that electron correlation is important in the binding of the 

excess electron15–18 and that correlated methods such as second order perturbation theory 

(MP2) or coupled cluster theory with singe, double, and perturbative triple excitations, 

CCSD(T), should be used. Moreover the H2O( )n

−
 systems are sensitive to the choice of 

basis set. In particular, diffuse functions have been demonstrated to be necessary to 

describe the flexible and diffuse excess electron density.15,16,18 Taken together, these 

realizations severely limit the size of the systems that can be studied by well correlated 

ab initio methods, given that MP2 and CCSD(T) formally scale as N5 and N7, 

respectively, with N being the number of basis functions. H2O( )33

−
 and H2O( )7

−
 are the 

largest clusters that have been studied to date by MP2 and CCSD(T), respectively, with 

the 6-31(+,3+)G* basis set. In this basis set each H atom has two additional s-type diffuse 

functions.15 In the current study, MP2 and the completely renormalized coupled cluster 
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method, CR-CC(2,3), aka CR-CCSD(T)L, are employed, since the CR-CC(2,3) approach 

is at least as accurate as CCSD(T) and often provides CCSDT quality results at a 

computational cost that is similar to that of CCSD(T).19    

“Locality” is a relative concept. Although it is relatively diffuse, the excess 

electron density is not completely delocalized (such as the electron ‘sea’ in metals), 

especially viewed in the context of bulk water. It is possible to find water cluster motifs 

in which the excess electron density is localized and to treat such a motif as one open-

shell fragment and rest of the system as closed-shell fragments. The natural parallelism of 

fragmentation approaches reduces memory and CPU time costs, both of which are 

bottlenecks in correlated electronic structure calculations. Furthermore, a multi-layer 

construction, i.e., different levels of theory for different layers (regions) of the system, 

has been implemented for many fragmentation methods. In principle, the fragmentation 

approach should allow much larger anionic water clusters to be examined by ab initio 

methods. In the present work, one particular fragmentation approach, the cluster-in-

molecule (CIM)20–22 method, will be assessed in terms of the accuracy of vertical electron 

binding energies (VEBE).  

The remainder of the paper is arranged as follows. The main idea of the single-

environment (SE) CIM is described briefly in Section II. Section III presents the 

computational details. The results are reported and discussed in Section IV. Conclusions 

are drawn in Section V.  

Methods 

The central premise of fragmentation approaches is that chemical processes are 

local phenomena. For fragmentation methods, it is crucial to have a sensible and reliable 
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method for fragmenting the system so that the locality is maintained. It is also desirable 

to have the fragment definitions as controlled and automated as possible. For the solvated 

electron the excess electron density is relatively diffuse and spread over several water 

molecules and may also extend beyond the atoms in a small cluster, rendering 

fragmentation difficult. The CIM method provides a possible solution to this problem. 

CIM is a linear scaling local correlation approach. The CIM method is based on 

the premise that the total correlation energy of a system can be obtained as the sum of the 

contributions from the occupied orthonormal LMOs (central LMOs) and their respective 

occupied (environmental) and unoccupied localized orbital domains, since the correlation 

contributions from spatially distant LMO pairs are expected to be negligible.20,23–28  

In this work, the single-environment (SE) CIM method is used. The SE CIM 

coupled cluster (CC) approach has been demonstrated to work well for weakly bound 

molecular clusters, with subsystems that apparently do not vary with the nuclear 

geometry.22 The construction of SE CIM subsystems is detailed in reference 22. Unlike 

most other fragmentation methods whose fragmentation schemes are entirely atom-based, 

often with distance cutoffs, the CIM method is LMO-based and the Fock matrix elements 

are used as a key threshold parameter. This local correlation approach is ‘black box’ in 

the sense that one does not require detailed prior knowledge of the system to know how 

to fragment it. This feature is particularly useful for the diverse motifs of H2O( )n

−
. 

However, the threshold parameters do need to be adjusted from their default values for 

the H2O( )n

−
 systems.  
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Computational details 

 The water clusters examined in this work range from 2 to 20 water molecules 

denoted as nw.* where n is the number of water molecules in the system and * is an 

index for the particular isomer, either numerical or alphabetical. The structures of 

H2O( )n

−
	  ,	   n	   =	   2-‐7,	   14,	   20,	   indicated by an alphabetical index, are obtained from the 

studies by Herbert et. al.15–17. The water clusters 6w.1 to 6w.5 were obtained from a study 

by Jordan and coworkers.14 The 8-water clusters and the cluster 12w.1 were obtained 

from Monte Carlo simulated annealing simulations conducted by the authors, followed by 

MP2/aug-cc-pVTZ 29,30 geometry optimization and verified to be minima by Hessian 

calculations.  

Single point energy calculations were carried out for the clusters H2O( )n

−
 

obtained from studies by Herbert et. al.15–17 at the MP2 level of theory using three basis 

sets: 6-31++G(d,p), 6-31++G(df,p) and 6-311++G(d,p). The energies of the neutral 

clusters with the same geometries as the corresponding anions were also computed with 

these three basis sets. In this study, the VEBE is defined as VEBE = E (anion cluster) – E 

(neutral cluster at anionic structure). A negative VEBE indicates that the anion is at least 

metastable with respect to the autodetachment of the excess electron. Since a finite basis 

set is used, a positive VEBE is less conclusive, suggesting the anion is unstable relative 

to the neutral cluster but the excess electron may be confined by an inadequate basis set. 

The clusters with positive VEBE are not further investigated with CIM. By comparing 

VEBEs calculated using the aforementioned three basis sets, 6-31++G(d,p) was chosen 

for the CR-CC(2,3) and CIM calculations as a compromise between accuracy and 
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computational cost. Due to the high computational cost, the full CR-CC(2,3) calculations 

were only done for those H2O( )n

−
 clusters with n ≤ 7 that have a negative VEBE. For all 

clusters with negative VEBEs (Fig 1), the VEBEs were also calculated using CIM/CR-

CC(2,3)/6-31++G(d,p) with default threshold settings.  

There are three key threshold parameters in CIM that can alter the size of the 

subsystems and consequently affect the binding energy and the computational efficiency. 

Each occupied LMO ϕ i is taken to be a “central” LMO. An occupied LMO ϕ j  is 

considered to be an “environmental” LMO for a specific central LMO ϕ i  if the 

magnitude of the Fock matrix element, ϕ i f ϕ j , is greater than the threshold ζ . So, 

the smaller the value of ζ , the more environmental LMOs are included and the larger the 

subsystem is. The default value of ζ is 0.003. The central LMO ϕ i and the associated 

environmental LMOs {ϕ j } form an occupied LMO domain {I}. It is possible that all of 

the occupied LMOs in one domain are included in another larger domain. In that case the 

two domains {I} and {J} are combined to form a composite domain {IJ}. The central 

LMOs of the larger domain {IJ} now contain two central LMOs, ϕ i and ϕ j . The second 

threshold parameter is a Mulliken population cutoff (ATMMLK). For each LMO ϕ i 	  all	  

of	   the	   atoms	   in	   the	   entire	   system	   are	   ranked	   in	   the	   order	   of	   decreasing	  Mulliken	  

orbital	   populations	   in	  ϕ i .	   A	   given	   LMOϕ i 	  is	   assigned	   to	   an	   atom	   if	   the	   Mulliken	  

population	  on	   the	  atom	  in	  LMO	  ϕ i 	  exceeds	  ATMMLK.	  The smaller ATMMLK is, the 

more atoms would be included in a subsystem. The default value of ATMMLK is 0.15.22 

Considering the diffuse nature of the solvated electron system, reducing the Mulliken 
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charge cutoff may diminish the cost benefit of CIM. So ATMMLK=0.15 is used in this 

study. Lastly,η  is the threshold for selecting the unoccupied LMOs that are associated 

with a subsystem. The subsystem unoccupied LMOs are selected from the set of 

unoccupied LMOs of the extended subsystem. The larger the value of η , the more 

unoccupied orbitals will be retained. The definition and construction of the extended 

subsystem and the unoccupied LMOs is discussed in detail in Ref. 22. The	  default	  value	  

of	  η 	  is	   set	   to	   0.2.	  The values of ζ 	  and	  η 	  were	   chosen	   by	   predicting	   the	   VEBE	   for	  

several	   small	   clusters	   that	   have	   a	   broad	   range	   of	   VEBEs.	  ζ is	   chosen	   to	   be	   0.001	  

while	   η 	  remains	   at	   its	   default	   value.	   CIM/CR-CC(2,3) calculations were then 

performed with the chosen set of parameters (ζ =	  0.001,	  ATMMLK	  =	  0.15,	  η=	  0.2)	  for 

all clusters that have negative VEBEs.  

To quantify the charge distributions of the anionic and neutral clusters, atomic 

charges were computed by fitting to the electrostatic potential at points that are selected 

according to an algorithm due to Spackman.31 The differences in the atomic charges 

between anionic and neutral clusters were computed. All of the calculations were 

performed with the GAMESS electronic structure code.32,33 

Results and Discussion 

The MP2 VEBEs of water clusters H2O( )n

−
, n = 2-7,14 and 20, were examined 

using the three basis sets discussed in Section 3 (See Table 1) and compared with the 

previously calculated MP2/6-31(1+,3+)G*15–17 VEBEs by Herbert et. al.. The 6-

31(1+,3+)G* basis set, compared to the 6-31++G* basis, has two additional diffuse s 
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functions on H atoms with their exponents decreased by a successive factor of 3.32.15 The 

diffuse functions on H atoms have been shown to be crucial for the binding of the excess 

electron.15 However the 6-31(1+,3+)G* basis is not employed in the present study, 

because the CIM method may have difficulties constructing the unoccupied LMOs of 

subsystems,20 or the very large subsystems that are created may require more memory 

than is available on one processor (CR-CC(2,3) only runs in serial).  

Table 1 tabulates the MP2 VEBE results with all four basis sets. The addition of a 

set of f polarization functions hardly changes the binding energies in comparison with the 

6-31++G(d,p) VEBEs. The VEBEs predicted by the triple zeta basis set are reasonably 

close to the 6-31++G(d,p) VEBEs. For all of the clusters listed in Table 1, MP2/6-

31(1+,3+)G* predicts negative VEBEs. For the smallest clusters (n = 2-4) MP2/6-

31++G(d,p) predicts mostly positive VEBEs. However, for n>4, the two sets of VEBE 

are in qualitative agreement, with the MP2/6-31++G(d,p) predicting VEBEs that are 

generally ~3-6 kcal/mol smaller in magnitude than the MP2/6-31(1+,3+)G* VEBE 

values, but with the same sign. The small clusters with positive VEBE still do not bind 

the excess electron even after MP2/6-31++G(d,p) geometry optimization. MP2 with the 

smaller 6-31+G(d,p) basis set (results not shown in Table 1) predicts that most of the 

clusters in Table 1 have positive VEBE. The Dunning correlation consistent aug-cc-pvTZ 

basis set does not produce negative VEBEs for the very small clusters and already 

becomes computationally demanding for 6-water clusters. Consequently, the 6-

31++G(d,p) basis is chosen as a good compromise for the present work.  

Herbert and Head-Gordon15 noted that the magnitudes of the MP2 electron 

detachment energies are consistently ~30 meV (0.69 kcal/mol) smaller than the 
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corresponding CCSD(T) values using the same basis set. The MP2 error is essentially 

independent of the magnitude of the binding energy or the structure motif. A similar 

conclusion can be drawn from the results in Table 2 for MP2 and CR-CC(2,3): the 

magnitudes of MP2 VEBEs are on average ~0.67 kcal/mol lower than the CR-CC(2,3) 

values. This observation is important for the present study, since MP2 VEBEs for larger 

clusters can provide good benchmarks for CIM/CR-CC(2,3) and can therefore be used to 

obtain estimated CR-CC(2,3) VEBE values when CR-CC(2,3) is too challenging for the 

entire system. 

The MP2 and CR-CC(2,3) VEBEs calculated with the 6-31++G(d,p) basis set are 

compared in Table 3. The CR-CC(2,3) VEBE values of the clusters with n ≥ 8 are 

estimated by adding  -0.67 kcal/mol to the corresponding MP2 values. These estimated 

CR-CC(2,3) VEBEs are in italics to emphasize that they are only used as a guideline. The 

clusters that have positive VEBE in Table 1 do not appear in Table 3. The VEBE 

calculated using CIM/CR-CC(2,3) are also tabulated in Table 3. The percent error (% 

error) is used to assess the quality of the results rather than the absolute errors. The % 

errors are calculated as (CIM/CR-CC(2,3) VEBE – CR-CC(2,3) VEBE)/CR-CC(2,3) 

VEBE. Using the CIM default ζ =0.003, the predicted VEBEs are in poor agreement 

with the benchmark VEBEs, with an average % error of 76%. Relative to CR-CC(2,3) 

VEBEs, the RMS error of CIM/CR-CC(2,3) (ζ =0.003) is 23.65 kcal/mol, two orders of 

magnitude larger compared to that of MP2 (0.68 kcal/mol). Moreover there seems to be 

no pattern as to whether the error over- or under-estimates the VEBE. The default CIM 

threshold parameters were originally benchmarked22 mainly using neutral systems 
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(alkanes, water clusters), and they appear to be inadequate for delocalized anionic 

systems like H2O( )n

−
.  

As mentioned in the computational details section, some threshold parameters 

may influence the construction of subsystems and consequently the CIM correlation 

energy. To find the optimal values of these parameters, small clusters with large VEBE 

errors are examined by varying ζ and	  η . Table 4 presents the VEBEs for the 4w.a, 5w.d 

and 5w.e clusters calculated at different ζ values.  At ζ = 0.003, CIM/CR-CC(2,3) 

produces VEBEs that deviate significantly from the CR-CC(2,3) results. For ζ = 0.002, 

some improvement can be seen although the results are still far from satisfactory. ζ = 

0.001 yields much improved VEBEs. The RMS errors for the three clusters in Table 4 are 

reduced from 4.99 kcal/mol forζ = 0.003 to 0.58 kcal/mol for ζ = 0.001. For ζ = 0.003 

or 0.002, CIM generates 4 subsystems for both the anionic and neutral 5w.e cluster, while 

forζ = 0.001, CIM generates only one subsystem for both anionic and neutral 5w.e 

clusters. Therefore, the computed CIM/CR-CC(2,3) VEBE is identical to the CR-CC(2,3) 

VEBE. The anionic 5w.d cluster is also not fragmented. This lack of fragmentation means 

that CIM recognizes that this cluster is too delocalized to fragment. Table 5 illustrates 

that there is little dependence of the predicted VEBE for the 6w.5 cluster on changes in 

the parameter η .	   

The CIM/CR-CC(2,3) calculations reported in Table 3 were also performed with 

ζ = 0.001 and other parameters kept as their default values. Two observations can be 

made immediately. First, the average percent error decreases from 76% to 15%. Second, 

the CIM/CR-CC(2,3) method with ζ = 0.001 almost always underestimates the VEBE. 
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The RMS error of CIM/CR-CC(2,3) with ζ = 0.001 is 2.34 kcal/mol, about 10 times 

smaller than that with ζ = 0.003.  

The MP2/6-31++G(d,p) and CR-CC(2,3)/6-31++G(d,p) electron correlation 

contributions to the VEBE are shown in Table 6. The MP2/6-31++G(d,p) VEBE electron 

correlation contribution is ~ 0.67 kcal/mol smaller in magnitude than that obtained with 

CR-CC(2,3)/6-31++G(d,p) for n ≤ 7. This is expected since MP2 and CR-CC(2,3) use the 

same HF reference wave function. The CR-CC(2,3) VEBE correlation contributions for 

n > 7 are therefore estimated by adding -0.67 kcal/mol to MP2 correlation energies and 

are listed in italics. By comparing to the VEBEs listed in Table 3, one can see that the 

correlation energy is crucial for the binding of the excess electron. For small clusters (n = 

2-5), the excess electron will not bind at the Hartree-Fock level. For most of the 6- and 7- 

water clusters the VEBEs come almost entirely from electron correlation. As the cluster 

size increases, the percentage contribution of electron correlation to the VEBE decreases. 

However, the correlation effect is still a significant portion of the VEBE, with the 

smallest contribution among the clusters examined here being ~20% for the 12w.1 

cluster. The variation of the correlation energy contributions with the size of the system is 

much smaller than the variation of VEBEs with the size of the cluster and different 

configurations of the same size.  

The CIM/CR-CC(2,3) errors for the total VEBE and the correlation contributions 

compared to the corresponding CR-CC(2,3) values [CIM/CR-CC(2,3) – CR-CC(2,3)] are 

also tabulated in Table 6. The errors in the VEBE come entirely from the correlation 

energy errors. This is because CIM splits the electron correlation energies into 
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contributions from subsystems, but the reference HF energy is calculated for the entire 

system.  

 Unfortunately, examination of the entries in Table 6 does not reveal a clear 

relationship between the cluster size and the correlation energy errors of H2O( )n

−
	  and	  

H2O( )n
. The signs of the errors are almost always positive (CIM correlation energies are 

less negative) which means (not surprisingly) that CIM tends to under-estimate the 

correlation energies. The error in the calculated VEBE depends, of course on the relative 

errors in the anion and in the corresponding neutral cluster. If both anionic and neutral 

clusters have similar errors with the same sign (both large errors or both small errors), the 

resulting VEBE error is small, for example, 6w.1 and 6w.2. An interesting example is the 

cluster 6w.e: Upon decreasing ζ from 0.003 to 0.001, the correlation energy errors for 

both the anionic and neutral clusters decrease. However, the improvement of the anion 

correlation energy is much less than that of the neutral cluster, so the ζ =0.001 VEBE 

error is larger than that for 0.003. In most cases, the errors of the neutral clusters are 

smaller since the electron distributions in the neutral clusters are more localized. The 

majority of the clusters have the same number of subsystems generated by CIM for the 

anion and its neutral counterpart. Of course, the LMO composition of the anion and 

neutral subsystems do not necessarily match. Hence, the difference between the anionic 

and neutral correlation errors is a manifestation of the difference in the degree of 

localization (or delocalization). In the present work, the biggest difference in the number 

of subsystems between an anion and the corresponding neutral is three for 5w.4 and 8w.2.  
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The excess electron charge distribution can be studied by taking the difference 

between the atomic charges of the anionic and neutral clusters that are computed by 

fitting to their electrostatic potentials.31 Of course, there is no unique way to define 

atomic charges. So, these atomic charges should be viewed as qualitative indicators for 

understanding the CIM subsystems. Consider, for example, 6w.5. The atomic charge 

difference is shown in Figure 2(a). The excess electron, indicated by negative charge 

differences on atom centers, is essentially evenly distributed over the hydrogen atoms 

that point into the cavity, while the other hydrogen atoms that form the hydrogen network 

are hardly changed, behaving like ‘spectators’. This particular ‘internally solvated’ 

anionic cluster would naturally be considered to be one open-shell system and requires no 

further fragmentation. In fact, such delocalized systems would be extremely difficult, if 

not impossible, to deal with for any fragmentation scheme, because fragmentation 

approaches are based on the locality of the chemistry. The excess electron distribution 

polarizes the OH bonds pointing towards the cavity. The anion oxygen atoms become 

slightly more positively charged compared to their neutral counterparts. A sensible 

fragmentation should include both the hydrogen atoms pointing into the cavity and all of 

the polarized oxygen atoms. Figures 2(b) and 2(c) show the CIM fragmented subsystems 

of the anion using ζ = 0.003 and ζ = 0.001, respectively. Each of the subsystems in 

Figure 2(b) encompasses three water molecules on one side and the three mostly 

negatively charged hydrogen atoms on the other side, while the subsystems in Figure 2(c) 

also include the three oxygen atoms on the other side, leaving out three ‘spectator’ 

hydrogen atoms on the other side. Larger subsystems should improve the results in 

general. In this case, all six OH bonds equally polarized by the excess electron are 
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included in each subsystem in Figure 2(c). The number of subsystems is also reduced in 

Figure 2(c) relative to Figure 2(b).  

 In terms of the computational cost, the effect of changing ζ from 0.003 to 0.001 is 

manifested in two ways. The sizes of most of the subsystems increase, and the number of 

subsystems may change. The magnitude of the increase in the computational demand 

varies from system to system. Using 14w.a and 14w.b as examples, the replicated 

memory requirement for each subsystem is reported in Table 7 in units of 1 megaword 

where a word is defined as 64 bits. One can see that almost all of the subsystems of 14w.a 

and 14w.b increase in size when ζ  decreases, but the change of ζ impacts 14w.b 

subsystems much more than in 14w.a. 14w_n indicates the neutral counterparts of the 

anions. The fact that the increase in computational demand for the neutral cluster 

14w_n.b is much less compared to that of 14w.b is again a demonstration of the 

difference in the degree of localization between the anion and the neutral.  

 The CIM method significantly reduces the memory requirement compared to an 

ab initio calculation of the whole system. For example, a CR-CC(2,3)/6-31++G(d,p) 

calculation of 7-water clusters requires ~ 1378 megawords while the largest subsystem of 

7 water clusters require ~ 480 megawords, and many other subsystems need less than 100 

megawords. For 20-water clusters, MP2/6-31++G(d,p) requires ~ 4776 megawords 

(serial calculation), while a CIM/CR-CC(2,3) using the same basis set requires 447 

megawords for the largest subsystem and ~ 97 megawords on average. So, even though 

empirically corrected MP2 calculations do very well for the VEBE, the reduced CIM/CR-
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CC(2,3) memory requirements will allow calculations on much larger clusters.  In 

addition, such empirical corrections may not be available for all properties of interest. 

Conclusions 

The excess electron in finite anionic water clusters is diffuse, and electron 

correlation plays an important role in the binding of the excess electron to the water 

clusters, especially smaller clusters (2-5 water molecules). The cluster-in-molecule (CIM) 

method in combination with CR-CC(2,3) is assessed in this study in terms of the 

accuracy of VEBE for anionic water clusters in the range of 4 – 20 water molecules. The 

use of LMO domains for dividing the whole system provides the ease of a ‘black-box’ 

type calculation, with just three threshold parameters. Setting the threshold parameter ζ

to 0.001 provides reasonably accurate VEBEs at an affordable computational expense. At 

present, the CIM method in GAMESS is a sequential code. However, the implementation 

of a distributed parallel code is in progress. Such a parallel code will considerably reduce 

the computational cost of CIM calculations.  The CIM/CR-CC(2,3) method may be a 

viable alternative approach for obtaining benchmarking numbers for water clusters when 

traditional coupled-cluster theory calculations for the entire system are difficult or 

impossible.   
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Figure 1. The geometries of the H2O( )n

−
, n = 4-20, studied by CIM in this work.  

 

Figure 2 (a) The atomic charge difference between the anionic and the neutral clusters of 

6w.5; (b) The six subsystems constructed by CIM/CR-CC(2,3) with ζ = 0.003; (c) the 

two subsystems constructed by CIM/CR-CC(2,3) with ζ = 0.001 
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Table 1 MP2 VEBE (kcal/mol) for anionic water clusters H2O( )n

−
, n = 2-7, 14, 20.  

 MP2a 

6-31(1+,3+)G* 
MP2 

6-31++G(d,p) 
MP2 

6-31++G(df,p) 
MP2 

6-311++G(d,p) 
2w -0.61 12.47 12.43 13.27 

3w.a -0.16 13.35 13.30 14.00 
3w.b -3.26 6.19 6.14 7.05 
4w.a -8.02 -1.94 -2.01 -0.85 
4w.b -4.57 3.17 3.10 4.05 
4w.c -0.95 11.15 11.09 11.86 
4w.d -5.69 1.73 1.66 2.66 
4w.e -4.42 3.66 3.61 4.63 
4w.f -6.05 1.53 1.47 2.43 
5w.a -9.38 -3.48 -3.54 -2.44 
5w.b -1.76 9.36 9.29 10.13 
5w.c -10.28 -5.09 -5.16 -4.03 
5w.d -6.52 -0.61 -0.69 -0.40 
5w.e -8.50 -2.56 -2.63 -1.62 
5w.f -8.25 -1.83 -1.90 -0.91 
6w.a -0.20 12.11 12.08 12.78 
6w.b -16.26 -13.24 -13.35 -11.96 
6w.c -0.46 11.16 11.13 11.76 
6w.d -2.30 8.20 8.13 8.96 
6w.e -10.78 -5.63 -5.71 -4.59 
6w.f -11.65 -6.95 -7.03 -5.75 
6w.g -10.20 -5.11 -5.19 -4.18 
7w.a -14.66 -10.74 -10.83 -9.62 
7w.b -13.17 -8.65 -8.72 -7.70 
7w.c -10.44 -4.17 -4.24 -3.23 
14w.a -19.36 -14.81 -14.90 -13.83 
14w.b -21.65 -20.87 -21.07 -19.94 
20w.a -25.32 -21.77 -21.87 -20.65 
20w.b -20.35 -16.48 -16.57 -15.48 
20w.c -14.84 -10.44 -10.52 -9.59 

a The MP2/6-31(1+,3+)G* VEBEs are taken from references 7-9*. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  The	  structures	  and	  the	  electron	  detachment	  energies	  are	  available	  in	  the	  
supporting	  information	  for	  these	  three	  references	  at	  
http://chemistry.osu.edu/~herbert/reprints/JPCA_112_6171_suppinfo.txt	  
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Table 2 VEBE (kcal/mol) computed using MP2 and CR-CC(2,3) at 6-31++G(d,p) basis 

set for H2O( )n

−
, n = 4 - 7 

 MP2 
6-31++G(d,p) 

CR-CC(2,3) 
6-31++G(d,p) 

4w.a -1.94 -2.59 
5w.a -3.48 -4.26 
5w.c -5.09 -5.70 
5w.d -0.61 -1.49 
5w.e -2.56 -3.22 
5w.f -1.83 -2.34 
6w.1 -3.09 -4.11 
6w.2 -6.83 -7.51 
6w.3 -13.22 -13.67 
6w.4 -5.31 -6.08 
6w.5 -13.89 -14.46 
6w.b -13.24 -13.80 
6w.e -5.63 -6.34 
6w.f -6.95 -7.84 
6w.g -5.11 -5.68 
7w.a -10.74 -11.48 
7w.b -8.65 -9.18 
7w.c -4.17 -4.68 
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Table 3 VEBEs (kcal/mol) for H2O( )n

−
, n = 4 – 20, calculated using MP2, CR-CC(2,3), 

and CIM-CR-CC(2,3) with the 6-31++G(d,p) basis set. The CR-CC(2,3) VEBEs for 

clusters larger than 7 water molecules are estimated from MP2 values (in italics). The % 

errors relative to those estimated values are also in italics. The MP2 and CIM RMS errors 

are	  given	  in	  kcal/mol 

 MP2 
 

CR-CC(2,3) 
 

CIM/ 
CR-CC(2,3) 
ζ =0.003 

% 
Error 

CIM/ 
CR-CC(2,3) 
ζ =0.001 

% 
Error 

 
4w.a -1.94 -2.59 -0.80 -69% -1.95 -25% 
5w.a -3.48 -4.26 -3.65 -14% -4.15 -3% 
5w.c -5.09 -5.70 -5.82 2% -5.11 -10% 
5w.d -0.61 -1.49 -9.74 556% -2.26 52% 
5w.e -2.56 -3.22 -1.40 -57% -3.21 0% 
5w.f -1.83 -2.34 -8.07 245% -1.40 -40% 
6w.1 -3.09 -4.11 -3.29 -20% -3.88 -6% 
6w.2 -6.83 -7.51 -6.77 -10% -6.53 -13% 
6w.3 -13.22 -13.67 -7.94 -42% -8.15 -40% 
6w.4 -5.31 -6.08 -10.40 71% -5.11 -16% 
6w.5 -13.89 -14.46 -39.46 173% -13.13 -9% 
6w.b -13.24 -13.80 -17.28 25% -12.26 -11% 
6w.e -5.63 -6.34 -5.44 -14% -2.81 -56% 
6w.f -6.95 -7.84 -13.61 74% -6.20 -21% 
6w.g -5.11 -5.68 -10.81 90% -5.00 -12% 
7w.a -10.74 -11.48 -14.40 26% -10.83 -6% 
7w.b -8.65 -9.18 -8.26 -10% -8.26 -10% 
7w.c -4.17 -4.68 -3.94 -16% -4.30 -8% 
8w.2 21.42 -22.09 -22.98 4% -21.06 -5% 
8w.4 -25.39 -26.07 -19.16 -26% -23.25 -11% 
8w.5 -19.30 -19.98 -24.60 23% -18.23 -9% 
8w.6 -23.37 -24.04 -25.28 5% -21.48 -11% 
8w.7 -22.63 -23.31 -22.80 -2% -21.50 -8% 
8w.8 -24.61 -25.28 -32.26 28% -24.88 -2% 
8w.9 -18.64 -19.31 -31.99 66% -17.65 -9% 
8w.10 -27.01 -27.69 -23.78 -14% -26.51 -4% 
8w.11 -24.29 -24.96 -30.79 23% -24.79 -1% 
8w.12 -15.08 -15.76 -20.70 31% -15.02 -5% 
12w.1 -48.79 -49.46 -42.28 -15% -44.71 -10% 
12w.a -16.23 -16.90 -15.03 -11% -15.68 -7% 
14w.a -14.81 -15.48 -12.45 -20% -12.66 -18% 
14w.b -20.87 -21.54 -10.47 -51% -21.93 2% 
20w.a -21.77 -22.44 -14.89 -34% -15.45 -31% 
20w.b -16.48 -17.15 -151.70 785% -12.20 -29% 
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Table 3 continued	  
20w.c -10.44 -11.11 -8.77 -21% -9.27 -17% 
RMS 
error 

0.68  23.65  2.34  
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Table 4 VEBEs (kcal/mol) of three clusters computed using CR-CC(2,3), and CIM/CR-

CC(2,3) with three ζ  values and the 6-31++G(d,p) basis set. The RMS errors are in 

kcal/mol. 

 4w.a 5w.d 5w.e RMS error 
CR-CC(2,3) 

 
-2.59 -1.49 -3.22  

CIM/CR-CC(2,3) 
ζ = 0.003 (default) 

-0.80 -9.74 -1.40 4.99 

CIM/CR-CC(2,3) 
ζ = 0.002 

-0.85 -2.60 -1.79 1.45 

CIM/CR-CC(2,3) 
ζ = 0.001 

-1.95 -2.26 -3.21 0.58 

 

 

 

 

 



www.manaraa.com

	   169	  

 

Table 5 VEBEs (in kcal/mol) of three clusters computed using CR-CC(2,3) and 

CIM/CR-CC(2,3) with three values of η  and the 6-31++G(d,p) basis set. 

 6w.5 
CR-CC(2,3) -14.46 

CIM/CR-CC(2,3) 
η  = 0.2 (default) 

-39.46 

CIM/CR-CC(2,3) 
η  = 0.3 

-39.08 

CIM/CR-CC(2,3) 
η  = 0.4 

-37.50 
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Table 6 MP2, CR-CC(2,3) and CIM/CR-CC(2,3) correlation energy contributions 

[anionic correlation energy – neutral correlation energy] to the VEBE (kcal/mol). 

 MP2 
Corr. 

E. 

CR-
CC(2,3) 
Corr. E. 

CIM/CR-
CC(2,3) 

Total VEBE 
Error 

CIM/CR-
CC(2,3) 
Corr. E. 

Error 

CIM/CR-
CC(2,3) 
Anionic 
Corr. E. 

Error 

CIM/CR-
CC(2,3) 
Neutral 
Corr. E. 

Error 
4w.a -5.59 -6.24 0.64 0.64 0.79 0.15 
5w.a -5.81 -6.60 0.11 0.11 0.44 0.33 
5w.c -5.82 -6.43 0.59 0.59 1.21 0.63 
5w.d -5.47 -6.35 -0.78 -0.78 0.01 0.79 
5w.e -5.89 -6.55 0.00 0.00 0.00 0.00 
5w.f -5.51 -6.02 0.94 0.94 0.84 -0.09 
6w.1 -5.64 -6.66 0.24 0.24 4.05 3.82 
6w.2 -5.90 -6.58 0.98 0.98 4.27 3.28 
6w.3 -6.39 -6.85 5.53 5.53 7.06 1.53 
6w.4 -5.65 -6.43 0.97 0.97 0.78 -0.19 
6w.5 -5.43 -6.01 1.33 1.33 1.06 -0.27 
6w.b -6.57 -7.13 1.54 1.54 3.33 1.79 
6w.e -6.03 -6.74 3.53 3.53 5.12 1.59 
6w.f -5.79 -6.68 1.64 1.64 2.53 0.89 
6w.g -5.78 -6.34 0.68 0.68 0.85 0.17 
7w.a -6.29 -7.03 0.65 0.65 2.91 2.26 
7w.b -6.07 -6.60 0.91 0.91 1.97 1.06 
7w.c -5.64 -6.15 0.37 0.37 0.16 -0.21 
8w.2 -6.47 -7.14 1.03 1.03   
8w.4 -7.45 -8.12 2.82 2.82   
8w.5 -7.01 -7.68 1.74 1.74   
8w.6 -6.56 -7.23 2.56 2.56   
8w.7 -6.84 -7.51 1.80 1.80   
8w.8 -7.22 -7.89 0.40 0.40   
8w.9 -6.85 -7.52 1.66 1.66   
8w.10 -7.24 -7.91 1.17 1.17   
8w.11 -6.83 -7.50 0.17 0.17   
8w.12 -6.46 -7.13 0.74 0.74   
12w.1 -9.90 -10.57 4.75 4.75   
12w.a -7.63 -8.30 1.22 1.22   
14w.a -6.35 -7.02 2.82 2.82   
14w.b -11.05 -11.72 -0.39 -0.39   
20w.a -6.61 -7.28 6.99 6.99   
20w.b -6.34 -7.01 4.95 4.95   
20w.c -6.34 -7.01 1.84 1.84   
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Table 7. Memory requirement (in mwords) for the CIM subsystems of the clusters 14w.a 

and 14w.b and their neutral counterparts with different ζ values. 14w_n designates the 

neutral counterparts.  

 14w.a 14w_n.a 14w.b 14w_n.b 
ζ

subsystem 
0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 

1 62 119 62 119 42 292 43 135 
2 45 89 45 94 50 135 50 64 
3 80 371 42 57 52 96 52 96 
4 35 122 35 122 290 3780 73 448 
5 62 122 62 122 44 122 61 122 
6 45 91 45 94 42 706 44 304 
7 42 81 32 84 59 149 59 149 
8 57 57 57 57 29 2216 29 1066 
9 45 125 45 125 50 135 52 113 
10 61 61 61 61 218 3256 20 144 
11 44 127 44 61 132 1633 19 55 
12 36 62 36 62 68 250 68 164 
13 111 295 61 61 412 4743 79 701 
14 104 194 61 113 40 91 32 94 
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Figure	  1 continued 
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Figure	  1 continued 

5w.4  

5w.5 

5w.6 
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Figure	  1 continued 
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Figure	  1 continued      
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Figure	  1 continued  
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 
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Figure	  1 continued 

20w.b 

20w.c 

Figure	  1 
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Figure	  2(a)	  
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 6w.5 subsystem 1 

 6w.5 subsystem 2 

 6w.5 subsystem 3 

 6w.5 subsystem 4 

Figure 2(b) 



www.manaraa.com

	   191	  

 6w.5 subsystem 5 

 6w.5 subsystem 6 

Figure 2(b) continued 
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 6w.5 subsystem 1 

 6w.5 subsystem 2 

Figure 2(c) 
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CHAPTER 6 THEORETICAL STUDY OF THE BINDING OF 

SILANE (SiH4) WITH BORANE (BH3), DIBORANE (B2H6) AND 

BORON TRICHOLORIDE (BCl3): THE ROLE OF CORE-

ELECTRON CORRELATION 
A paper published in  

The Journal of Physical Chemistry A 2012, 116, 11668 

 

Peng Xu, Mark S. Gordon, Binh Nguyen 

 

Abstract 

Equilibrium structures and energies of gas-phase molecular complexes SiH4---

BH3, SiH4---B2H6 and SiH4---BCl3
 were determined using second-order Møller-Plesset 

perturbation theory (MP2) and the aug-cc-pVTZ basis set, with and without explicit core 

electron correlation. Single-point energies are calculated for the MP2-optimized 

structures using MP2 with the aug-cc-pVQZ basis set and using coupled-cluster theory 

(CCSD(T)) with both the aug-cc-pVTZ and the aug-cc-pVQZ basis sets to extrapolate to 

the complete basis set (CBS). Partition functions were calculated using the harmonic 

oscillator/rigid-rotor approximation at the MP2/aug-cc-pVTZ level of theory. The explicit 

core electron correlation is demonstrated to have significant impact on the structures and 

binding energies and binding enthalpies of these complexes. The binding enthalpies were 

obtained at various temperatures ranging from 0K to the dissociation temperatures of the 

complexes. The potential energy surfaces of the three complexes were explored, and no 

transition states were found along the pathways from separated species to the complexes.  
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Introduction 

The chemical vapor deposition (CVD) technique is a process widely used in the 

semiconductor industry to produce thin films, in which source gas/precursor molecules 

are transformed into a solid on the surface of a substrate1.  Silane (SiH4) is a common 

precursor used in the CVD process due to its high volatility. Several boron compounds, 

borane (BH3), diborane (B2H6) and boron tricholoride (BCl3), are commonly used as 

precursors for the fabrication of boron doped thin films. At the initial stage of the CVD 

process, silane and boron-containing source gases interact through thermal initiation. 

Various chemical processes could occur, producing radical or charged species depending 

on the surrounding conditions. However, in this study, the processes of interest are the 

formation of the addition complexes: 

SiH4 + BH3 à  SiH4---BH3  (1a) 

SiH4 + B2H6 à  SiH4---B2H6  (1b) 

SiH4 + BCl3 à  SiH4---BCl3  (1c) 

In these processes, temperature can potentially influence the stability of both the reactants 

and the products, which in turn will affect the subsequent steps in the CVD process. 

Therefore it is crucial to understand the temperature effects on these binding processes.  

The goals of this study are twofold: (1) To predict accurate structures and binding 

energies and binding enthalpies for the SiH4---BH3, SiH4---B2H6 and SiH4---BCl3 

complexes with high level ab initio methods and to determine how increasing the 

temperature affects the binding energies; (2) To explore the potential energy surfaces of 

these complexes along the formation pathway, in particular, to search for possible 

transition states. The binding energies ΔEb are defined as the energy changes associated 
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with reactions (1). For example, for reaction (1a) ΔEb = E(SiH4---BH3) – E(SiH4) – 

E(BH3), where Ex refers to the total electronic energy of species x. The binding enthalpies 

at 0K are obtained from  ΔEb + Δ(ZPE) where ZPEx is the zero point vibrational energy 

for species x, obtained using the harmonic oscillator approximation. Further temperature 

corrections, using standard methods, yield the corresponding binding enthalpies at the 

higher temperatures. For clarity, the absolute (positive) binding energies and enthalpies 

are quoted in this work.  

The paper is organized as follows: the computational methods employed in this 

study are presented in Section II. In Section III, results and discussion are arranged to 

elucidate the results of the study. Conclusions are drawn in Section IV.  

Computational Methods 

 The geometries of SiH4, BH3, B2H6 and BCl3 were optimized using second-order 

Møller-Plesset perturbation theory (MP2) with the augmented correlation-consistent 

triple-zeta basis set (aug-cc-pVTZ). The geometries of the complexes SiH4---BH3, SiH4--

-B2H6 and SiH4---BCl3 were optimized with the same level of theory and basis set. 

Harmonic vibrational frequencies for all the optimized species were evaluated to confirm 

that each molecular species is a genuine minimum on their respective potential energy 

surfaces. Single point energies were computed for these optimized geometries using 

coupled cluster theory with single, double and perturbative (non-iterative) triple 

excitations  (CCSD(T)) using the same aug-cc-pVTZ basis set. The aforementioned 

calculations by default used the frozen core approximation that assumes the core 

electrons are inert during the electron correlation calculations.  
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To determine the importance of core electron correlation for the systems of 

interest, an identical set of calculations was carried out with all core electrons treated 

explicitly.  Explicit core electron correlation generally adds a significant computational 

cost. The lowest-lying molecular orbitals (MOs) are expected to contribute very little to 

the relative energies and geometries of the molecular species in this study. Hence, in an 

attempt to reduce the computational cost while retaining accuracy, all of the calculations 

mentioned above were repeated with the Si 1s orbitals frozen. For BCl3 and the SiH4---

BCl3 complex the three Cl 1s orbitals were also frozen. Freezing more of the core 

electrons (the outer core) results in significant changes in the predicted geometries and 

relative energies. In addition, as a less computationally demanding alternative approach 

to describe the core electrons, Huzinaga’s model core potential (MCP)2 with the 

equivalent TZ quality basis was employed to optimize the geometries of all of the clusters 

and their components. In the MCP method, the core electrons are replaced by the MCP, 

which incorporates scalar relativistic effects. The valence electrons are described with the 

associated triple zeta basis set.  

The binding energies and binding enthalpies obtained with outer core electrons 

included in the correlation part of the calculations are extrapolated to the complete basis 

set (CBS) limit at both the MP2 and CCSD(T) levels of theory. Both the HF reference 

energies and the correlation energies are extrapolated using two basis sets (two-point 

extrapolation), aug-cc-pVTZ and aug-ccpVQZ. Single point energies are computed with 

the aug-cc-pVQZ basis set at the TZ-optimized geometries. The two-point extrapolation 

formula of Karton and Martin3 is used for the HF energies: 

E(X) = E(CBS) +
A
Xα  
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α = 5.34 for the aug-cc-pVTZ/QZ pair.  

The correlation energy extrapolation is accomplished using 4 

Ecorr (X) = Ecorr (CBS) + aX −3  

Using the vibrational frequency information to calculate the appropriate harmonic 

oscillator/rigid rotor partition functions, the binding enthalpies were calculated at 

different temperatures. To determine if barriers exist during the formation process, re-

optimization of the geometries was started from separated components of the complexes 

(~ 5Å apart). The re-optimized complexes were compared to the original optimized 

structures. All calculations were carried out using GAMESS program5. 

Results and Discussion 

 The minimum energy structures optimized at the MP2/aug-cc-pVTZ level of 

theory with full explicit core electron correlation for all of the molecular species involved 

in this study are shown in Figure 1. It has been suggested that electron correlation is 

important in describing the binding of these complexes and that the Hartree-Fock (HF) 

method fails to predict the correct structure for the SiH4---BH3 complex6.  

Usually, core electrons are excluded from the electron correlation calculations, 

since most chemical phenomena involve only the valence electrons. Excluding the core 

electrons, i.e. frozen core approximation (FC), can save significant computational cost. 

However, in the present study, the core electron correlation is shown to play a key role in 

the prediction of both the Si--B distances and the binding energies and enthalpies of the 

three complexes. The geometries (Table 1) and binding energies (Table 2) of the SiH4---

BH3, SiH4---B2H6 and SiH4---BCl3 complexes exhibit significant differences, depending 

on whether or not core correlation is included in the calculations. For the SiH4---BH3 
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complex, including the core correlation causes a decrease in the Si---B distance by ~0.04 

Å. This in turn results in an ~4 kcal/mol increase in the binding energy. Similarly for 

SiH4---BCl3, the shortening of the Si--B distance caused by the inclusion of core 

correlation, enhances the binding energy by nearly a factor of two. The effect of core 

electron correlation is most dramatic for the SiH4---B2H6 complex. For this species, it was 

not possible to locate a minimum energy structure unless core correlation was included in 

the calculation. Indeed, the SiH4---B2H6 complex is unbound at the CCSD(T)/aug-cc-

pVTZ level of theory without the inclusion of core electron correlation.   

In heavier elements like Si, it is likely that the “outer core” (i.e., 2s, 2p) electrons 

are more important for predicting properties than the “inner core” 1s electrons. This is 

referred to as the partial frozen core approximation (PFC) in this paper. Close inspection 

of MOs reveals that lowest MOs of SiH4 and BCl3 are essentially the Si 1s atomic orbital 

and Cl 1s atomic orbital with the orbital energies -68.77 and -104.86 Hartree, 

respectively. On the other hand, the lowest-lying MOs of BH3 and B2H6 are largely boron 

in character and all higher than -10.00 Hartree. Therefore, one can consider freezing the 

electrons in the Si 1s orbital and Cl 1s orbitals during the electron correlation part of the 

calculation. The structures and binding energies that are obtained when the Si 1s core 

electrons and, in the case of SiH4 --- BCl3, also Cl 1s core electrons are not correlated 

are also listed in Tables 1 and 2. The resulting structures and binding energies 

demonstrate that the 1s electrons of Si and Cl play little role in the binding.  

The MCP predicted Si--B distances in the three complexes lie in between those 

with and without the inclusion of core correlation, but more closely resemble the frozen-
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core-approximation results. The same is true for the binding energies. Thus, the use of 

MCPs is not a viable alternative to including core correlation in the calculations.  

Of the three complexes considered here, SiH4---BH3 is overwhelmingly the most 

strongly bound, with one silane hydrogen shared with the boron atom, forming a bridged 

structure. In fact, the B—H distance for this hydrogen (1.271Å) is shorter than the 

corresponding Si—H distance (1.636Å). The Si—H distance is ~1.472Å in isolated SiH4 

and the B—H distance is ~1.181Å in isolated BH3. In the complex, one of the SiH4 

hydrogens is pulled and therefore elongated by the boron upon forming the bridged 

structure. The BH3 is planar before binding and adopts a pseudo-tetrahedral geometry 

after binding to the SiH4. After binding, the distances between silicon and the other three 

hydrogens in SiH4 are hardly affected (the changes are less than 0.01 Å). The only 

noticeable change in the BH3 bond lengths is that the distance between the boron and one 

of its hydrogens (#9 in Figure 1(e)) stretches from 1.1811 Å to 1.217 Å.  This 

exceptionally strong interaction between SiH4 and BH3 may be due to the electron-

deficient nature of boron, which frequently leads to bridging structures7. In contrast, in 

SiH4---BCl3, the electronegative chlorine atoms mitigate this tendency, thereby making 

the interaction between silane and boron tricholoride much weaker. The SiH4---B2H6 

complex exhibits the weakest binding, possibly due to the relative stability of the three-

center two-electron bonds formed among the two boron atoms and two bridging 

hydrogens8.  

Extrapolation of the binding energies to the complete basis set 

 The binding energies of the three complexes are extrapolated to the complete 

basis set limit (CBS) at the MP2 and CCSD(T) level of theories. The results are presented 
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in Table 3. The 0K binding enthalpies at the CBS limit are computed using the MP2/aug-

cc-pVTZ ZPE, assuming the ZPE changes little from aug-cc-pVTZ to the CBS limit.  At 

the CBS limit, the SiH4 --- BH3 complex is still quite strongly bound with over 10 

kcal/mol binding energy. The other two complexes exhibit similar binding strength 

differing by ~ 0.4 kcal/mol at the MP2 level of theory and 0.1 kcal/mol with CCSD(T).  

Temperature effect on the binding energies 

The binding enthalpies computed at MP2/aug-cc-pVTZ at various temperatures 

for the three complexes are plotted in Figure 2. The three curves show similar trends: a 

slight increase to a maximum binding enthalpy, followed by a monotonic decrease. The 

SiH4---BH3 complex binds most strongly at ~ 400K and remains bound until ~ 4000K. 

SiH4---B2H6 and SiH4---BCl3 reach their maximum binding enthalpies between 50 K and 

approach dissociation at ~ 500K and ~1100 K, respectively.  

Potential Energy Surfaces (PES) 

To explore the potential energy surfaces of these complexes, MP2/aug-cc-pVTZ 

(including Si and Cl outer core correlation) optimizations were performed starting from 

the separated components of the three complexes (~5Å apart). In all three cases, the 

separated complexes fall back to the original minima found in this study with no barriers. 

It is interesting that SiH4---BH3 and SiH4---B2H6 required tighter gradient convergence 

tolerance, which suggests that these two complexes have a relatively flat region near the 

minima on the PES. The fact that no transition states were found indicates that, at 0K, the 

kinetics of the binding processes between silane and the boron compounds studied in this 

project are diffusion-limited.   
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Conclusions  

 The equilibrium structures of SiH4---BH3, SiH4---B2H6 and SiH4---BCl3 

complexes were determined at the MP2/aug-cc-pVTZ level of theory.  Explicit core 

correlation, in particular, the outer core, is shown to play a crucial role in predicting both 

the structures and binding energies and binding enthalpies for all three complexes. The 

binding energies and 0K binding enthalpies at aug-cc-pVTZ basis set agree very well 

with the single point CCSD(T)/aug-cc-pVTZ results, the most accurate method employed 

in this study. The binding energies and 0K binding enthalpies including explicit outer 

core electron correlation are extrapolated to the complete basis set at both the MP2 and 

CCSD(T) levels of theory. Using model core potentials provides only a small 

improvement over the frozen core results. The binding enthalpies of the three complexes 

were evaluated from 0K to the dissociation temperature of each complex. All three 

complexes exhibit a similar trend, in which there is a slight increase in the binding 

enthalpy followed by a monotonic decrease as the temperature rises. At 0K, there are no 

barriers for the formation of the complexes.  
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Figure 1. Equilibrium structures of (a) SiH4, (b) BH3, (c) B2H6, (d) BCl3, (e) SiH4---BH3, 

(f) SiH4---B2H6 and (g) SiH4---BCl3 at MP2/Aug-cc-pVTZ with all the core electrons 

explicitly included in the electron correlation calculation. 

Figure 2. Binding enthalpies of (a) SiH4---BH3 (b) SiH4---B2H6 (c) SiH4---BCl3 at 

different temperatures with all the core electrons treated explicitly.  
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Figure1 

	  	   	  

	  

	   (a) SiH4   (b) BH3	  

	   	  

(c) B2H6      (d) BCl3 

	   	  

	   (e) SiH4---BH3      (f) SiH4---B2H6 
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Figure 1 continued 

	  

  (g) SiH4---BCl3 
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Figure	  2	  
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Figure	  2	  continued	  
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Table 1 Si---B distances for the optimized complexes. The columns from left to right are 

in the order: all electrons (including all core electrons) are treated explicitly; the lowest-

lying core electrons (partial frozen core approximation) are frozen; all core electrons are 

frozen (frozen core approximation) and core electrons replaced by model core potential. 

For SiH4---B2H6, both Si---B distances are shown. All the distances are in Å.	  

Si---B 
distance 

Full core 
correlation 

Partial frozen 
core 

approximation 

Frozen core 
approximation 

Model 
Core 

Potential 
SiH4---

BH3 
2.138 2.139 2.179 2.159 

SiH4---
B2H6 

3.624, 
4.434 

3.624, 4.440 3.908, 4.377 3.738, 
4.568 

SiH4---
BCl3 

3.601 3.605 3.782 3.713 
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Table 2 The binding energies (kcal/mol) and 0K binding enthalpies (in parentheses) for 

SiH4---BH3, SiH4---B2H6 and SiH4---BCl3 complexes calculated at MP2/aug-cc-pVTZ. 

The fourth and fifth columns show the binding energies and 0K enthalpies obtained if the 

partial frozen core or frozen core approximations are invoked, respectively. The binding 

energies obtained using MCPs are in the last column. 

Binding 
Energy 

(kcal/mol) 

MP2 
aug-cc-
pVTZ 

(full core 
correlation) 

CCSD(T) 
aug-cc-
pVTZ 

(full core 
correlation) 

MP2 
aug-cc-
pVTZ 
(partial 
frozen 
core) 

MP2 
aug-cc-
pVTZ 
(frozen 
core) 

Model 
Core 

Potential 

SiH4 – 
BH3 15.9 (11.2) 14.8 15.8(11.1) 11.9 

(7.3) 
11.0 

SiH4 – 
B2H6 2.2 (1.4) 2.2 

2.1(1.4) Fails to 
locate a 

minimum 

1.3 

SiH4 – 
BCl3 4.4 (3.6) 4.1 4.3(3.5) 2.4 (1.7) 3.2 
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Table 3 The binding energies (excluding ZP corrections) extrapolated to the CBS limit 

for both MP2 and CCSD(T) levels of theory. In both cases, the partially frozen core 

results are used for the extrapolation. The 0K binding enthalpies are in parentheses. 

 MP2 
Partial Frozen Core 

CCSD(T) 
Partial Frozen Core 

SiH4 --- BH3 13.1 (8.5) 11.9 (7.3) 
SiH4 --- B2H6 1.7 (1.0) 1.7 (1.0) 
SiH4 --- BCl3 2.1 (1.3) 1.6 (0.8) 
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CHAPTER 7 CONCLUSION 

The body of this dissertation is dedicated to the study of various types of 

intermolecular interactions in the framework of the effective fragment potential method 

(EFP). Localized molecular orbital (LMO) plays a central role in EFP, as well as the 

other fragmentation methods, cluster-in-molecules (CIM), employed in Chapter 5 of this 

dissertation.  

The projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) onto 

the SCF virtual space selects a ‘chemically important’ subset of the full virtual space 

called valence virtual space. Diagonalization of the Fock matrix in this much smaller 

valence virtual space gives rise to the valence virtual orbitals (VVOs). Accuracy-wise, 

the EFP charge transfer (CT) energies obtained by using the occupied MOs + VVOs are 

generally as accurate as those obtained with full virtual space. The ‘quasiatomic’ attribute 

of QUAMBOs makes the CT energies much less dependent on the choice of basis set. 

Because the number of QUAMBOs is identical to the number of minimal-basis MOs of a 

molecule, the computational cost for CT energy and gradient are dramatically reduced.  

The R-7 term in the dispersion expansion is developed in the framework of EFP 

formulated with Cartesian polarizability tensors over imaginary frequencies. The 

formulation is developed both in terms of molecular and LMO polarizabilities. The 

contrast between the R-7 dispersion term (E7) and R-6 dispersion term (E6) is very great: 

E7 is highly anisotropic while isotropic approximation for E6 is fairly good. E6 is always 

attractive while E7 can be either attractive or repulsive. Although E7 has a rotational 

average of zero, its importance should not be underestimated for solid-phase structures 
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and constrained reactions. The difference between the dispersion energies calculated with 

molecular and LMO polarizabilities is a manifestation of different expansions of the 

interaction operator truncated at a finite order. By comparing E6+E7 values with 

benchmarking symmetry-adapted-perturbation-theory (SAPT) dispersion energies, it is 

concluded that the dispersion expansion is not converged and at least the next term in the 

expansion, R-8 term, should be added. 

The exchange repulsion Fock operator (VXR) is derived by taking the variational 

derivative of the exchange repulsion energy between ab initio molecule and EFP 

potential (QM-EFP). The QM-EFP VXR is added to the ab initio Fock operator during the 

self-consistent field iterations. The current implementation of QM-EFP VXR and EXR 

allows the presence of more than one EFP fragments. The agreement between QM-EFP 

and RVS exchange repulsion energies is within 4 kcal/mol for small clusters. The fully 

analytic gradients of QM-EFP energies with respect to both ab initio atom and EFP 

centers have been derived and implemented. 

Currently EFP can only deal with closed-shell systems. The user makes the 

decision about the fragmentation when generating EFP potentials (MAKEFP). Each 

molecule in the system is typically treated as one EFP fragment.  

Anionic water clusters H2O( )n

−
, finite analogs of the solvated electron, are open-

shell systems with rather diffuse excess electron density. Such systems are usually 

extremely difficult to deal with by fragmentation methods (a benzene ring should not be 

fragmented due to its delocalized π cloud). Moreover, the complexity of the potential 

energy surfaces of H2O( )n

−
 grows rapidly. CIM, a local correlation approach, in 
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combination with CR-CC(2,3) provides a ‘black-box’ type calculation for H2O( )n

−
. The 

CIM fragments are defined through LMO domains rather than atom domains. By 

reducing the threshold parameter ζ to 0.001 as a trade-off between accuracy and 

computational cost, CIM/CR-CC(2,3) approach can predict the vertical electron binding 

energies with the RMS error ~ 2.34 kcal/mol. The cluster size that can be studied by 

CIM/CR-CC(2,3) is significantly increased compared to full ab initio calculations with 

the same basis set. 

Equilibrium structures and binding energies of gas-phase molecular complexes, 

SiH4---BH3, SiH4---B2H6 and SiH4---BCl3, were determined using second-order Møller-

Plesset perturbation theory (MP2) at aug-cc-pVTZ basis set. It was realized that the core 

electrons, especially outer core electrons, play a crucial role in predicating the structures 

and binding enthalpies for all three complexes. There are no transition states found for all 

three complexes at 0 K along the pathway of complex formation. The binding enthalpies 

of the three complexes were evaluated from 0 K to their respective dissociation 

temperatures.  The binding enthalpies of all three complexes increase slightly followed 

by a monotonic decrease as the temperature rises. 

As much as fragmentation approaches are advocated in this dissertation, it is 

important to realize the shortcoming and limitation of the approach. Approximations of 

different severity are applied to both the Hamiltonian and the wave function. Of course 

even the so called ab initio methods contain approximations. It is important to distinguish 

approximations and fitting: approximations are based on mathematical or sensible 

physical/chemical arguments while fitting is empirical even if the process of obtaining 

the fitted parameters is systematic. An extremely important attribute of EFP that 
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separates it from many other model potentials is that there is no fitting and all the terms 

are derived from first-principle with truncated expansions. Consequently EFP can be 

improved systematically, not through ad hoc attempts (e.g. the R-7 dispersion term is a 

systematic improvement). Another more subtle point is that clearly defined 

approximations allow users to decide whether a method can be applied to a specific 

system, e.g. EFP would not be employed for the SiH4---BH3 complex since the 

intermolecular interactions between core orbitals of different molecules are considered 

tiny and are neglected in EFP.  
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